Cargando…

Introductory lectures on equivariant cohomology : (with appendices by Loring W. Tu and Alberto Arabia) /

"This book gives a clear introductory account of equivariant cohomology, a central topic in algebraic topology. Equivariant cohomology is concerned with the algebraic topology of spaces with a group action, or in other words, with symmetries of spaces. First defined in the 1950s, it has been in...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Tu, Loring W. (Autor)
Otros Autores: Arabia, Alberto (Contribuidor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton : Princeton University Press, 2020.
Colección:Annals of mathematics studies ; no. 204.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 JSTOR_on1145920618
003 OCoLC
005 20231005004200.0
006 m o d
007 cr |||||||||||
008 200301s2020 nju ob 001 0 eng
010 |a  2019048303 
040 |a DLC  |b eng  |e rda  |c DLC  |d N$T  |d EBLCP  |d YDXIT  |d JSTOR  |d STF  |d OCLCF  |d UKAHL  |d DEGRU  |d IEEEE  |d DLC  |d OCLCO  |d SFB  |d OCLCO  |d OCLCQ  |d YDX 
019 |a 1143625201  |a 1147841610  |a 1150868081  |a 1155431357  |a 1298426279  |a 1336088798  |a 1370507237 
020 |a 9780691197487  |q (pdf) 
020 |a 0691197482 
020 |z 9780691191744  |q (hardback) 
020 |z 9780691191751  |q (paperback) 
020 |z 0691191743 
020 |z 0691191751 
029 1 |a AU@  |b 000066903486 
029 1 |a AU@  |b 000069886944 
035 |a (OCoLC)1145920618  |z (OCoLC)1143625201  |z (OCoLC)1147841610  |z (OCoLC)1150868081  |z (OCoLC)1155431357  |z (OCoLC)1298426279  |z (OCoLC)1336088798  |z (OCoLC)1370507237 
037 |a 22573/ctvrcqfnp  |b JSTOR 
037 |a 9452489  |b IEEE 
042 |a pcc 
050 0 0 |a QA612.3 
082 0 0 |a 514/.23  |2 23 
084 |a SK 340  |q DE-16  |2 rvk  |0 (DE-625)rvk/143232: 
049 |a UAMI 
100 1 |a Tu, Loring W.,  |e author. 
245 1 0 |a Introductory lectures on equivariant cohomology :  |b (with appendices by Loring W. Tu and Alberto Arabia) /  |c Loring W. Tu. 
264 1 |a Princeton :  |b Princeton University Press,  |c 2020. 
300 |a 1 online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Annals of Mathematics Studies ;  |v number 204 
504 |a Includes bibliographical references and index. 
505 0 |a Homotopy groups and CW complexes -- Principal bundles -- Homotopy quotients and equivariant cohomology -- Universal bundles and classifying spaces -- Spectral sequences -- Equivariant cohomology of S² under rotation -- A universal bundle for a compact lie group -- General properties of equivariant cohomology -- The lie derivative and interior multiplication -- Fundamental vector fields -- Basic forms -- Integration on a compact connected lie group -- Vector-valued forms -- The Maurer-Cartan form -- Connections on a principal bundle -- Curvature on a principal bundle -- Differential graded algebras -- The Weil algebra and the weil model -- Circle actions -- The cartan model in general -- Outline of a proof of the equivariant de Rham theorem -- Localization in algebra -- Free and locally free actions -- The topology of a group action -- Borel localization for a circle action -- A crash course in representation theory -- Integration of equivariant forms -- Rationale for a localization formula -- Localization formulas -- Proof of the localization formula for a circle action -- Some applications. 
520 |a "This book gives a clear introductory account of equivariant cohomology, a central topic in algebraic topology. Equivariant cohomology is concerned with the algebraic topology of spaces with a group action, or in other words, with symmetries of spaces. First defined in the 1950s, it has been introduced into K-theory and algebraic geometry, but it is in algebraic topology that the concepts are the most transparent and the proofs are the simplest. One of the most useful applications of equivariant cohomology is the equivariant localization theorem of Atiyah-Bott and Berline-Vergne, which converts the integral of an equivariant differential form into a finite sum over the fixed point set of the group action, providing a powerful tool for computing integrals over a manifold. Because integrals and symmetries are ubiquitous, equivariant cohomology has found applications in diverse areas of mathematics and physics. Assuming readers have taken one semester of manifold theory and a year of algebraic topology, Loring Tu begins with the topological construction of equivariant cohomology, then develops the theory for smooth manifolds with the aid of differential forms. To keep the exposition simple, the equivariant localization theorem is proven only for a circle action. An appendix gives a proof of the equivariant de Rham theorem, demonstrating that equivariant cohomology can be computed using equivariant differential forms. Examples and calculations illustrate new concepts. Exercises include hints or solutions, making this book suitable for self-study"--  |c Provided by publisher. 
588 |a Description based on print version record and CIP data provided by publisher. 
590 |a JSTOR  |b Books at JSTOR All Purchased 
590 |a JSTOR  |b Books at JSTOR Evidence Based Acquisitions 
590 |a JSTOR  |b Books at JSTOR Demand Driven Acquisitions (DDA) 
650 0 |a Homology theory. 
650 6 |a Homologie. 
650 7 |a MATHEMATICS  |x Geometry  |x Algebraic.  |2 bisacsh 
650 7 |a Homology theory.  |2 fast  |0 (OCoLC)fst00959720 
700 1 |a Arabia, Alberto,  |e contributor. 
776 0 8 |i Print version:  |a Tu, Loring W..  |t Introductory lectures on equivariant cohomology  |d Princeton : Princeton University Press, 2020.  |z 9780691191744  |w (DLC) 2019048302 
830 0 |a Annals of mathematics studies ;  |v no. 204. 
856 4 0 |u https://jstor.uam.elogim.com/stable/10.2307/j.ctvrdf1gz  |z Texto completo 
938 |a De Gruyter  |b DEGR  |n 9780691197487 
938 |a Askews and Holts Library Services  |b ASKH  |n AH37221191 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL6125843 
938 |a EBSCOhost  |b EBSC  |n 2284239 
938 |a YBP Library Services  |b YANK  |n 16358386 
994 |a 92  |b IZTAP