Cargando…

Statistical inference via convex optimization /

"This authoritative book draws on the latest research to explore the interplay of high-dimensional statistics with optimization. Through an accessible analysis of fundamental problems of hypothesis testing and signal recovery, Anatoli Juditsky and Arkadi Nemirovski show how convex optimization...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Juditsky, Anatoli, 1962- (Autor), Nemirovskiĭ, A. S. (Arkadiĭ Semenovich) (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton, New Jersey : Princeton University Press, [2020]
Colección:Princeton series in applied mathematics.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 JSTOR_on1134459711
003 OCoLC
005 20231005004200.0
006 m o d
007 cr cn|||||||||
008 191215t20202020njua ob 001 0 eng
010 |a  2019048293 
040 |a DLC  |b eng  |e rda  |e pn  |c DLC  |d OCLCO  |d OCLCF  |d EBLCP  |d JSTOR  |d OCLCQ  |d YDX  |d N$T  |d YDX  |d DEGRU  |d BRX  |d UKAHL  |d WAU  |d VTU  |d SFB  |d IWU  |d OCLCO  |d IEEEE  |d VT2  |d OCLCO  |d OCLCQ  |d YWS 
019 |a 1147839922  |a 1157305543  |a 1294673428 
020 |a 9780691200316  |q (electronic book) 
020 |a 0691200319  |q (electronic book) 
020 |z 9780691197296  |q (hardcover) 
020 |z 0691197296  |q (hardcover) 
024 7 |a 10.1515/9780691200316  |2 doi 
029 1 |a AU@  |b 000066626580 
035 |a (OCoLC)1134459711  |z (OCoLC)1147839922  |z (OCoLC)1157305543  |z (OCoLC)1294673428 
037 |a 22573/ctvqs3661  |b JSTOR 
037 |a 9453317  |b IEEE 
042 |a pcc 
050 4 |a QA276  |b .J84 2020eb 
072 7 |a MAT  |x 042000  |2 bisacsh 
072 7 |a MAT  |x 029000  |2 bisacsh 
072 7 |a MAT  |x 003000  |2 bisacsh 
072 7 |a MAT  |x 000000  |2 bisacsh 
082 0 0 |a 519.5/4  |2 23 
049 |a UAMI 
100 1 |a Juditsky, Anatoli,  |d 1962-  |e author. 
245 1 0 |a Statistical inference via convex optimization /  |c Anatoli Juditsky, Arkadi Nemirovski. 
264 1 |a Princeton, New Jersey :  |b Princeton University Press,  |c [2020] 
264 4 |c ©2020 
300 |a 1 online resource (xx, 631 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b n  |2 rdamedia 
338 |a online resource  |b nc  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Princeton series in applied mathematics 
504 |a Includes bibliographical references and index. 
505 0 |a On computational tractability -- Sparse recovery via ℓ₁ minimization -- Hypothesis testing -- From hypothesis testing to estimating functionals -- Signal recovery by linear estimation -- Signal recovery beyond linear estimates -- Solutions to selected exercises. 
520 |a "This authoritative book draws on the latest research to explore the interplay of high-dimensional statistics with optimization. Through an accessible analysis of fundamental problems of hypothesis testing and signal recovery, Anatoli Juditsky and Arkadi Nemirovski show how convex optimization theory can be used to devise and analyze near-optimal statistical inferences. Statistical Inference via Convex Optimization is an essential resource for optimization specialists who are new to statistics and its applications, and for data scientists who want to improve their optimization methods. Juditsky and Nemirovski provide the first systematic treatment of the statistical techniques that have arisen from advances in the theory of optimization. They focus on four well-known statistical problems--sparse recovery, hypothesis testing, and recovery from indirect observations of both signals and functions of signals--demonstrating how they can be solved more efficiently as convex optimization problems. The emphasis throughout is on achieving the best possible statistical performance. The construction of inference routines and the quantification of their statistical performance are given by efficient computation rather than by analytical derivation typical of more conventional statistical approaches. In addition to being computation-friendly, the methods described in this book enable practitioners to handle numerous situations too difficult for closed analytical form analysis, such as composite hypothesis testing and signal recovery in inverse problems. Statistical Inference via Convex Optimization features exercises with solutions along with extensive appendixes, making it ideal for use as a graduate text"--  |c Provided by publisher. 
588 0 |a Description based on online resource, title from digital title page (viewed on February 12, 2021). 
590 |a JSTOR  |b Books at JSTOR Demand Driven Acquisitions (DDA) 
590 |a JSTOR  |b Books at JSTOR Evidence Based Acquisitions 
590 |a JSTOR  |b Books at JSTOR All Purchased 
650 0 |a Mathematical statistics. 
650 0 |a Mathematical optimization. 
650 0 |a Convex functions. 
650 6 |a Optimisation mathématique. 
650 6 |a Fonctions convexes. 
650 7 |a MATHEMATICS  |x Optimization.  |2 bisacsh 
650 7 |a Convex functions.  |2 fast  |0 (OCoLC)fst00877260 
650 7 |a Mathematical optimization.  |2 fast  |0 (OCoLC)fst01012099 
650 7 |a Mathematical statistics.  |2 fast  |0 (OCoLC)fst01012127 
653 |a All of Nonparametric Statistics. 
653 |a Asymptotic Methods in Statistical Decision Theory. 
653 |a Dantzig selector. 
653 |a Gaussian observations. 
653 |a Has'minskii. 
653 |a Hellinger distance. 
653 |a Ibragimov. 
653 |a Introduction to Nonparametric Estimation. 
653 |a Lagrange duality. 
653 |a Le Cam. 
653 |a N-convex function. 
653 |a Statistical Estimation. 
653 |a Tsybakov. 
653 |a Wasserman. 
653 |a bisection algorithm. 
653 |a conic programming. 
653 |a convex sets. 
653 |a duality. 
653 |a ell-1-norm minimization. 
653 |a estimating functions. 
653 |a lasso selector. 
653 |a minimization. 
653 |a saddle points. 
653 |a signal plus noise. 
653 |a signal-to-noise. 
653 |a unobserved signal. 
653 |a variable selection. 
700 1 |a Nemirovskiĭ, A. S.  |q (Arkadiĭ Semenovich),  |e author. 
776 0 8 |i Print version:  |a Juditsky, Anatoli, 1962-  |t Statistical inference via convex optimization.  |d Princeton, New Jersey : Princeton University Press, [2020]  |z 9780691197296  |w (DLC) 2019048292  |w (OCoLC)1119533070 
830 0 |a Princeton series in applied mathematics. 
856 4 0 |u https://jstor.uam.elogim.com/stable/10.2307/j.ctvqsdxqd  |z Texto completo 
938 |a De Gruyter  |b DEGR  |n 9780691200316 
938 |a YBP Library Services  |b YANK  |n 16520676 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL6033733 
938 |a EBSCOhost  |b EBSC  |n 2270814 
938 |a Askews and Holts Library Services  |b ASKH  |n AH37092829 
994 |a 92  |b IZTAP