Cargando…

Eisenstein cohomology for GLn and the special values of Rankin-Selberg L-functions /

"This monograph, which is intended for the Annals of Math Studies, presents an important new result that lies at the intersection of number theory, geometry, and representation theory. Accordingly, the book will serve as a key reference in these fields. Given its comprehensive methodological ap...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Harder, Günter, 1938- (Autor), Raghuram, A. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton : Princeton University Press, 2020.
Colección:Annals of mathematics studies ; no. 203.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 JSTOR_on1121424717
003 OCoLC
005 20231005004200.0
006 m o d
007 cr |||||||||||
008 190923s2020 njua ob 001 0 eng
010 |a  2019025835 
040 |a DLC  |b eng  |e rda  |c DLC  |d OCLCF  |d OCLCO  |d JSTOR  |d N$T  |d OCLCQ  |d YDX  |d IEEEE  |d OCLCO  |d OCLCQ 
020 |a 9780691197937  |q electronic book 
020 |a 0691197938  |q electronic book 
020 |z 9780691197883  |q hardcover 
020 |z 9780691197890  |q paperback 
029 1 |a AU@  |b 000066431360 
035 |a (OCoLC)1121424717 
037 |a 22573/ctvj284m9  |b JSTOR 
037 |a 9452423  |b IEEE 
042 |a pcc 
050 0 4 |a QA242.5  |b .H3625 2020 
072 7 |a MAT  |x 022000  |2 bisacsh 
072 7 |a MAT  |x 012010  |2 bisacsh 
082 0 0 |a 514/.23  |2 23 
049 |a UAMI 
100 1 |a Harder, Günter,  |d 1938-  |e author. 
245 1 0 |a Eisenstein cohomology for GLn and the special values of Rankin-Selberg L-functions /  |c Günter Harder, A. Raghuram. 
264 1 |a Princeton :  |b Princeton University Press,  |c 2020. 
300 |a 1 online resource (xi, 220 pages). 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b n  |2 rdamedia 
338 |a online resource  |b nc  |2 rdacarrier 
490 1 |a Annals of mathematics studies ;  |v number 203 
504 |a Includes bibliographical references and index. 
505 0 |a Introduction -- The cohomology of GLn -- Analytic tools -- Boundary cohomology -- The strongly inner spectrum and applications -- Eisenstein cohomology -- L-functions -- Harish-Chandra modules over Z / by Günter Harder -- Archimedean intertwining operator / by Uwe Weselmann. 
520 |a "This monograph, which is intended for the Annals of Math Studies, presents an important new result that lies at the intersection of number theory, geometry, and representation theory. Accordingly, the book will serve as a key reference in these fields. Given its comprehensive methodological approach, the book will also provide a model for future work in these areas. This monograph builds on over forty years of ambitious research, initiated by Günter Harder in 1975. The results presented in this book extend well beyond previous research in the field, and are readily generalizeable"--  |c Provided by publisher. 
588 |a Description based on online resource; title from digital title page (viewed on October 01, 2020). 
590 |a JSTOR  |b Books at JSTOR Evidence Based Acquisitions 
590 |a JSTOR  |b Books at JSTOR All Purchased 
590 |a JSTOR  |b Books at JSTOR Demand Driven Acquisitions (DDA) 
650 0 |a Shimura varieties. 
650 0 |a Cohomology operations. 
650 0 |a Number theory. 
650 0 |a Arithmetic groups. 
650 0 |a L-functions. 
650 6 |a Variétés de Shimura. 
650 6 |a Opérations cohomologiques. 
650 6 |a Théorie des nombres. 
650 6 |a Groupes arithmétiques. 
650 6 |a Fonctions L. 
650 7 |a MATHEMATICS / Number Theory  |2 bisacsh 
650 7 |a Arithmetic groups.  |2 fast  |0 (OCoLC)fst00814524 
650 7 |a Cohomology operations.  |2 fast  |0 (OCoLC)fst00866607 
650 7 |a L-functions.  |2 fast  |0 (OCoLC)fst00989693 
650 7 |a Number theory.  |2 fast  |0 (OCoLC)fst01041214 
650 7 |a Shimura varieties.  |2 fast  |0 (OCoLC)fst01116007 
700 1 |a Raghuram, A.,  |e author. 
776 0 8 |i Print version:  |a Harder, Günter, 1938-  |t Eisenstein cohomology for GLn and the special values of Rankin-Selberg L-functions  |d Princeton : Princeton University Press, 2020.  |z 9780691197883  |w (DLC) 2019025834 
830 0 |a Annals of mathematics studies ;  |v no. 203. 
856 4 0 |u https://jstor.uam.elogim.com/stable/10.2307/j.ctvhrd1b0  |z Texto completo 
938 |a EBSCOhost  |b EBSC  |n 2155061 
994 |a 92  |b IZTAP