Classical and celestial mechanics : the Recife lectures /
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Princeton, N.J. ; Oxford :
Princeton University Press,
[2002]
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover Page
- Half-title Page
- Title Page
- Copyright Page
- Contents
- Foreword
- Preface
- Central Configurations and Relative Equilibria for the JV-Body Problem
- 1. Introduction
- 2. Dziobek's Coordinates
- 3. Configurations for the Three-Body Problem
- 4. Configurations in the Four-Body Problem
- 5. Configurations in the Five-Body Problem
- 6. Palmore's Coordinates
- Appendix A: The Area of a Triangle
- Appendix B: Mathematica Code for the Four-Body Problem
- Appendix C: Mathematica Code for the Planar Five-Body Problem
- References
- Singularities of the TV-Body Problem
- 1. Introduction
- 2. First Integrals
- 3. Singularities
- 4. Collisions
- 5. Pseudocollisions
- 6. Particular Cases
- 7. Clustered Configurations
- 8. Examples of Pseudocollisions
- 9. Relationships between Singularities
- 10. Extensions beyond Collision
- 11. Block Regularization
- 12. The Collision Manifold
- 13. The Case
- 14. The Case
- 15. The Case
- 16. Conclusions and Perspectives
- References
- Lectures on the Two-Body Problem
- Introduction
- Lecture 1. Preliminaries
- Lecture 2. Two Solutions by Reduction
- Lecture 3. Why Are Keplerian Orbits Closed?
- Lecture 4. Concerning the Eccentricity Vector
- Lecture 5. Lambert's Theorem
- Bibliography and Author Index
- Normal Forms of Hamiltonian Systems and Stability of Equilibria
- 1. Introduction
- 2. Hamiltonian Systems
- 3. Symplectic Changes of Coordinates and Generating Functions
- 4. Hamiltonian Flows
- 5. Stability of Equilibria
- 6. Normal Forms
- 7. The Linear Normalization
- 8. Some Stability Results
- 9. The Restricted Three-Body Problem
- 10. Deprit-Hori's Normalization Scheme.Proof of Theorem 6.1
- References
- Poincare's Compactification and Applications to Celestial Mechanics
- 1. Introduction
- 2. Poincare Compactification for Polynomial Vector Fields
- 3. Poincare Compactincation for Polynomial Hamiltonian Vector Fields
- 4. Generic Properties
- 5. Behavior at Infinity in the Monomial Case
- 6. The Kepler Problem
- 6.1 The Kepler Problem on the Line
- 6.2 The Kepler Problem in the Plane
- 7. The Poincare Compactification for Homogeneous Functions
- 8. The Kepler Problem without Regularization
- 8.1 The Kepler Problem on the Line
- 8.2 The Kepler Problem in the Plane
- 9. Hill's Problem
- References
- The Motion of the Moon
- 1. Remarks about the Accuracy of the Solution
- 2. The Equations of Motion
- 3. The Solution Method
- 4. The Intermediate Orbit
- 5. The Terms of First Order in the Inclination
- 6. Terms at First Order in e
- Appendix A: Canonical Transformation to Jacobi Coordinates
- Appendix B: MACSYMA Program for the Intermediate Orbit
- Appendix C: MACSYMA Program for Inclination
- Appendix D: MACSYMA Program for First Order Terms in e
- References
- Lectures on Geometrical Methods in Mechanics