Cargando…

The master equation and the convergence problem in mean field games /

This book describes the latest advances in the theory of mean field games, which are optimal control problems with a continuum of players, each of them interacting with the whole statistical distribution of a population. While originating in economics, this theory now has applications in areas as di...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Cardaliaguet, Pierre (Autor), Delarue, François, 1976- (Autor), Lasry, J. M. (Autor), Lions, P. L. (Pierre-Louis) (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton, New Jersey : Princeton University Press, 2019.
Colección:Annals of mathematics studies ; no. 201.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 JSTOR_on1105145193
003 OCoLC
005 20231005004200.0
006 m o d
007 cr cnu|||unuuu
008 190620s2019 nju ob 001 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d N$T  |d OCLCF  |d JSTOR  |d YDX  |d EBLCP  |d UKAHL  |d DEGRU  |d BRX  |d GZS  |d GZM  |d OCLCQ  |d GZS  |d IEEEE  |d OCLCO  |d OCLCA  |d OCLCQ  |d OCLCO  |d OCLCQ  |d SFB  |d OCLCQ  |d OCLCO 
019 |a 1107577676 
020 |a 9780691193717  |q (electronic bk.) 
020 |a 0691193711  |q (electronic bk.) 
020 |z 9780691190709 
029 1 |a AU@  |b 000065541790 
035 |a (OCoLC)1105145193  |z (OCoLC)1107577676 
037 |a 22573/ctvcjdck6  |b JSTOR 
037 |a 9452505  |b IEEE 
050 4 |a QA269 
072 7 |a MAT  |x 003000  |2 bisacsh 
072 7 |a MAT  |x 029000  |2 bisacsh 
072 7 |a MAT  |x 011000  |2 bisacsh 
072 7 |a MAT  |x 007020  |2 bisacsh 
082 0 4 |a 519.3  |2 23 
049 |a UAMI 
100 1 |a Cardaliaguet, Pierre,  |e author. 
245 1 4 |a The master equation and the convergence problem in mean field games /  |c Pierre Cardaliaguet, François Delarue, Jean-Michel Lasry, Pierre-Louis Lions. 
264 1 |a Princeton, New Jersey :  |b Princeton University Press,  |c 2019. 
264 4 |c ©2019 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Annals of mathematics studies ;  |v Number 201 
504 |a Includes bibliographical references and index. 
588 0 |a Online resource; title from PDF title page (EBSCO, viewed June 21, 2019). 
505 0 0 |t Frontmatter --  |t Contents --  |t Preface --  |t 1. Introduction --  |t 2. Presentation of the Main Results --  |t 3. A Starter: The First-Order Master Equation --  |t 4. Mean Field Game System with a Common Noise --  |t 5. The Second-Order Master Equation --  |t 6. Convergence of the Nash System --  |t A. Appendix --  |t References --  |t Index 
520 |a This book describes the latest advances in the theory of mean field games, which are optimal control problems with a continuum of players, each of them interacting with the whole statistical distribution of a population. While originating in economics, this theory now has applications in areas as diverse as mathematical finance, crowd phenomena, epidemiology, and cybersecurity. Because mean field games concern the interactions of infinitely many players in an optimal control framework, one expects them to appear as the limit for Nash equilibria of differential games with finitely many players, as the number of players tends to infinity. This book rigorously establishes this convergence, which has been an open problem until now. The limit of the system associated with differential games with finitely many players is described by the so-called master equation, a nonlocal transport equation in the space of measures. After defining a suitable notion of differentiability in the space of measures, the authors provide a complete self-contained analysis of the master equation. Their analysis includes the case of common noise problems in which all the players are affected by a common Brownian motion. They then go on to explain how to use the master equation to prove the mean field limit. This groundbreaking book presents two important new results in mean field games that contribute to a unified theoretical framework for this exciting and fast-developing area of mathematics. 
590 |a JSTOR  |b Books at JSTOR Demand Driven Acquisitions (DDA) 
590 |a JSTOR  |b Books at JSTOR All Purchased 
590 |a JSTOR  |b Books at JSTOR Evidence Based Acquisitions 
650 0 |a Game theory. 
650 0 |a Differential equations. 
650 0 |a Mean field theory. 
650 6 |a Théorie des jeux. 
650 6 |a Équations différentielles. 
650 6 |a Théorie de champ moyen. 
650 7 |a MATHEMATICS  |x Applied.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Probability & Statistics  |x General.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Game Theory.  |2 bisacsh 
650 7 |a Differential equations  |2 fast 
650 7 |a Game theory  |2 fast 
650 7 |a Mean field theory  |2 fast 
700 1 |a Delarue, François,  |d 1976-  |e author. 
700 1 |a Lasry, J. M.,  |e author. 
700 1 |a Lions, P. L.  |q (Pierre-Louis),  |e author. 
776 0 8 |i Print version:  |a Cardaliaguet, Pierre.  |t Master Equation and the Convergence Problem in Mean Field Games : (ams-201).  |d Princeton : Princeton University Press, ©2019  |z 9780691190709 
830 0 |a Annals of mathematics studies ;  |v no. 201. 
856 4 0 |u https://jstor.uam.elogim.com/stable/10.2307/j.ctvckq7qf  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH36452254 
938 |a De Gruyter  |b DEGR  |n 9780691193717 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5791799 
938 |a EBSCOhost  |b EBSC  |n 2030557 
938 |a YBP Library Services  |b YANK  |n 16161200 
994 |a 92  |b IZTAP