Cargando…

The Norm residue theorem in motivic cohomology /

This book presents the complete proof of the Bloch-Kato conjecture and several related conjectures of Beilinson and Lichtenbaum in algebraic geometry. Brought together here for the first time, these conjectures describe the structure of étale cohomology and its relation to motivic cohomology and Ch...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Haesemeyer, Christian
Otros Autores: Weibel, Charles A., 1950-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton, New Jersey : Princeton University Press, 2019.
Colección:Annals of mathematics studies ; no. 200.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 JSTOR_on1090539960
003 OCoLC
005 20231005004200.0
006 m o d
007 cr cnu|||unuuu
008 190325s2019 nju ob 001 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d N$T  |d EBLCP  |d DEGRU  |d OCLCF  |d JSTOR  |d YDX  |d YDXIT  |d UKAHL  |d OCLCQ  |d IEEEE  |d OCLCO  |d OCLCQ  |d SFB  |d OCLCQ  |d OCLCO 
066 |c (S 
019 |a 1105954533 
020 |a 9780691189635  |q (electronic bk.) 
020 |a 0691189633  |q (electronic bk.) 
020 |z 9780691181820 
020 |z 0691191042 
020 |z 9780691191041 
020 |z 0691181829 
029 1 |a AU@  |b 000065375739 
035 |a (OCoLC)1090539960  |z (OCoLC)1105954533 
037 |a 22573/ctv9413t6  |b JSTOR 
037 |a 9452365  |b IEEE 
050 4 |a QA612.3  |b .H34 2019 
072 7 |a MAT  |x 038000  |2 bisacsh 
072 7 |a MAT  |x 012010  |2 bisacsh 
082 0 4 |a 514/.23  |2 23 
049 |a UAMI 
100 1 |a Haesemeyer, Christian. 
245 1 4 |a The Norm residue theorem in motivic cohomology /  |c Christian Haesemeyer, Charles A. Weibel. 
264 1 |a Princeton, New Jersey :  |b Princeton University Press,  |c 2019. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Annals of mathematics studies ;  |v number 200 
504 |a Includes bibliographical references and index. 
588 0 |a Online resource; title from PDF file page (EBSCO, viewed March 26, 2019). 
505 0 |a Cover; Contents; Preface; Acknowledgments; Part I; 1. An Overview of the Proof; 1.1 First Reductions; 1.2 The Quick Proof; 1.3 Norm Varieties and Rost Varieties; 1.4 The Beilinson-Lichtenbaum Conditions; 1.5 Simplicial Schemes; 1.6 Motivic Cohomology Operations; 1.7 Historical Notes; 2. Relation to Beilinson-Lichtenbaum; 2.1 BL(n) Implies BL(n-1); 2.2 H90(n) Implies H90(n-1); 2.3 Cohomology of Singular Varieties; 2.4 Cohomology with Supports; 2.5 Rationally Contractible Presheaves; 2.6 Bloch-Kato Implies Beilinson-Lichtenbaum; 2.7 Condition H90(n) Implies BL(n); 2.8 Historical Notes 
505 8 |a 3. Hilbert 90 for KMn3.1 Hilbert 90 for KMn; 3.2 A Galois Cohomology Sequence; 3.3 Hilbert 90 for l-special Fields; 3.4 Cohomology Elements; 3.5 Historical Notes; 4. Rost Motives and H90; 4.1 Chow Motives; 4.2 X-Duality; 4.3 Rost Motives; 4.4 Rost Motives Imply Hilbert 90; 4.5 Historical Notes; 5. Existence of Rost Motives; 5.1 A Candidate for the Rost Motive; 5.2 Axioms (ii) and (iii); 5.3 End(M) Is a Local Ring; 5.4 Existence of a Rost Motive; 5.5 Historical Notes; 6. Motives over S; 6.1 Motives over a Scheme; 6.2 Motives over a Simplicial Scheme; 6.3 Motives over a Smooth Simplicial Scheme 
505 8 |a 6.4 The Slice Filtration6.5 Embedded Schemes; 6.6 The Operations Øi; 6.7 The Operation ØV; 6.8 Historical Notes; 7. The Motivic Group HBM-1,-1; 7.1 Properties of H-1,-1; 7.2 The Case of Norm Varieties; 7.3 Historical Notes; Part II; 8. Degree Formulas; 8.1 Algebraic Cobordism; 8.2 The General Degree Formula; 8.3 Other Degree Formulas; 8.4 An Equivariant Degree Formula; 8.5 The n-invariant; 8.6 Historical Notes; 9. Rost's Chain Lemma; 9.1 Forms on Vector Bundles; 9.2 The Chain Lemma when n=2; 9.3 The Symbol Chain; 9.4 The Tower of Varieties Pr and Qr; 9.5 Models for Moves of Type Cn 
505 8 |a 9.6 Proof of the Chain Lemma9.7 Nice G-actions; 9.8 Chain Lemma, Revisited; 9.9 Historical Notes; 10. Existence of Norm Varieties; 10.1 Properties of Norm Varieties; 10.2 Two vn-1-varieties; 10.3 Norm Varieties Are vn-1-varieties; 10.4 Existence of Norm Varieties; 10.5 Historical Notes; 11. Existence of Rost Varieties; 11.1 The Multiplication Principle; 11.2 The Norm Principle; 11.3 Weil Restriction; 11.4 Another Splitting Variety; 11.5 Expressing Norms; 11.6 Historical Notes; Part III; 12. Model Structures for the A1-homotopy Category; 12.1 The Projective Model Structure 
520 |a This book presents the complete proof of the Bloch-Kato conjecture and several related conjectures of Beilinson and Lichtenbaum in algebraic geometry. Brought together here for the first time, these conjectures describe the structure of étale cohomology and its relation to motivic cohomology and Chow groups. Although the proof relies on the work of several people, it is credited primarily to Vladimir Voevodsky. The authors draw on a multitude of published and unpublished sources to explain the large-scale structure of Voevodsky's proof and introduce the key figures behind its development. They go on to describe the highly innovative geometric constructions of Markus Rost, including the construction of norm varieties, which play a crucial role in the proof. The book then addresses symmetric powers of motives and motivic cohomology operations.Comprehensive and self-contained, The Norm Residue Theorem in Motivic Cohomology unites various components of the proof that until now were scattered across many sources of varying accessibility, often with differing hypotheses, definitions, and language. 
590 |a JSTOR  |b Books at JSTOR Evidence Based Acquisitions 
590 |a JSTOR  |b Books at JSTOR All Purchased 
590 |a JSTOR  |b Books at JSTOR Demand Driven Acquisitions (DDA) 
650 0 |a Homology theory. 
650 6 |a Homologie. 
650 7 |a MATHEMATICS  |x Topology.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Geometry  |x Algebraic.  |2 bisacsh 
650 7 |a Homology theory  |2 fast 
700 1 |a Weibel, Charles A.,  |d 1950- 
776 0 8 |i Print version:  |a Haesemeyer, Christian.  |t Norm residue theorem in motivic cohomology.  |d Princeton, New Jersey : Princeton University Press, 2019  |z 0691191042  |z 9780691191041  |w (OCoLC)1059268154 
830 0 |a Annals of mathematics studies ;  |v no. 200. 
856 4 0 |u https://jstor.uam.elogim.com/stable/10.2307/j.ctv941tx2  |z Texto completo 
880 8 |6 505-00/(S  |a 12.2 Radditive Presheaves12.3 The Radditive Projective Model Structure; 12.4 Δ-closed Classes and Weak Equivalences; 12.5 Bousfield Localization; 12.6 Bousfield Localization and Δ-closed Classes; 12.7 Nisnevich-Local Projective Model Structure; 12.8 Model Categories of Sheaves; 12.9 A1-local Model Structure; 12.10 Historical Notes; 13. Cohomology Operations; 13.1 Motivic Cohomology Operations; 13.2 Steenrod Operations; 13.3 Construction of Steenrod Operations; 13.4 The Milnor Operations Qi; 13.5 Qn of the Degree Map; 13.6 Margolis Homology; 13.7 A Motivic Degree Theorem; 13.8 Historical Notes 
938 |a EBSCOhost  |b EBSC  |n 1983652 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5739875 
938 |a De Gruyter  |b DEGR  |n 9780691189635 
938 |a YBP Library Services  |b YANK  |n 15896080 
938 |a Askews and Holts Library Services  |b ASKH  |n AH36073545 
994 |a 92  |b IZTAP