|
|
|
|
LEADER |
00000cam a2200000M 4500 |
001 |
JSTOR_on1083156630 |
003 |
OCoLC |
005 |
20231005004200.0 |
006 |
m o d |
007 |
cr ||||||||||| |
008 |
160323s2016 nju o 000 0 eng d |
040 |
|
|
|a EZ9
|b eng
|e pn
|c EZ9
|d OCLCO
|d YDXCP
|d JSTOR
|d OCLCF
|d COO
|d DEBBG
|d N$T
|d UIU
|d DEBSZ
|d IOG
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 945482836
|
020 |
|
|
|a 1400881927
|q (electronic bk.)
|
020 |
|
|
|a 9781400881925
|q (electronic bk.)
|
024 |
7 |
|
|a 10.1515/9781400881925
|2 doi
|
029 |
1 |
|
|a CHBIS
|b 010896139
|
029 |
1 |
|
|a CHVBK
|b 483393096
|
029 |
1 |
|
|a DEBBG
|b BV043712452
|
029 |
1 |
|
|a DEBSZ
|b 478624883
|
035 |
|
|
|a (OCoLC)1083156630
|z (OCoLC)945482836
|
037 |
|
|
|a 22573/ctt1bgtzs1
|b JSTOR
|
050 |
|
4 |
|a QA612.2
|
072 |
|
7 |
|a MAT000000
|2 bisacsh
|
082 |
0 |
4 |
|a 514.224
|2 19
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a David Eisenbud.
|
245 |
1 |
0 |
|a Three-dimensional link theory and invariants of plane curve singularities. (am-110).
|
260 |
|
|
|a Princeton :
|b Princeton Univ Press,
|c 2016.
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
0 |
|
|a Annals of Mathematics Studies ;
|v 110
|
505 |
0 |
0 |
|t Frontmatter --
|t Contents --
|t Abstract --
|t Three-Dimensional Link Theory and Invariants of Plane Curve Singularities --
|t Introduction --
|t Review --
|t Preview --
|t Chapter I: Foundations --
|t Appendix to Chapter I: Algebraic Links --
|t Chapter II: Classification --
|t Chapter III: Invariants --
|t Chapter IV: Examples --
|t Chapter V: Relation to Plumbing --
|t References --
|t Backmatter.
|
546 |
|
|
|a In English.
|
520 |
|
|
|a This book gives a new foundation for the theory of links in 3-space modeled on the modern developmentby Jaco, Shalen, Johannson, Thurston et al. of the theory of 3-manifolds. The basic construction is a method of obtaining any link by "splicing" links of the simplest kinds, namely those whose exteriors are Seifert fibered or hyperbolic. This approach to link theory is particularly attractive since most invariants of links are additive under splicing. Specially distinguished from this viewpoint is the class of links, none of whose splice components is hyperbolic. It includes all links constructed by cabling and connected sums, in particular all links of singularities of complex plane curves. One of the main contributions of this monograph is the calculation of invariants of these classes of links, such as the Alexander polynomials, monodromy, and Seifert forms.
|
590 |
|
|
|a JSTOR
|b Books at JSTOR Demand Driven Acquisitions (DDA)
|
590 |
|
|
|a JSTOR
|b Books at JSTOR All Purchased
|
650 |
|
0 |
|a Link theory.
|
650 |
|
0 |
|a Invariants.
|
650 |
|
0 |
|a Curves, Plane.
|
650 |
|
0 |
|a Singularities (Mathematics)
|
650 |
|
6 |
|a Théorie du lien.
|
650 |
|
6 |
|a Invariants.
|
650 |
|
6 |
|a Courbes planes.
|
650 |
|
6 |
|a Singularités (Mathématiques)
|
650 |
|
7 |
|a MATHEMATICS
|x General.
|2 bisacsh
|
650 |
|
7 |
|a Curves, Plane
|2 fast
|
650 |
|
7 |
|a Invariants
|2 fast
|
650 |
|
7 |
|a Link theory
|2 fast
|
650 |
|
7 |
|a Singularities (Mathematics)
|2 fast
|
856 |
4 |
0 |
|u https://jstor.uam.elogim.com/stable/10.2307/j.ctt1bgzb9w
|z Texto completo
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 1432898
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 12887020
|
994 |
|
|
|a 92
|b IZTAP
|