Cargando…

Learning Ontology Relations by Combining Corpus-Based Techniques and Reasoning on Data from Semantic Web Sources

The manual construction of formal domain conceptualizations (ontologies) is labor-intensive. Ontology learning, by contrast, provides (semi- )automatic ontology generation from input data such as domain text. This thesis proposes a novel approach for learning labels of non-taxonomic ontology relatio...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Wohlgenannt, Gerhard (Autor)
Formato: Tesis Electrónico eBook
Idioma:Inglés
Publicado: Frankfurt a.M. Peter Lang GmbH, Internationaler Verlag der Wissenschaften [2018], ©2011.
Edición:1st, New ed.
Colección:Free online access: JSTOR.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000M 4500
001 JSTOR_on1080470798
003 OCoLC
005 20231005004200.0
006 m o d
007 cr |||||||||||
008 181228t20182011gw om 000 0 eng d
040 |a PLANG  |b eng  |e pn  |c PLANG  |d JSTOR  |d ICN  |d OCLCF  |d OCLCQ  |d OCLCO  |d LVT  |d OCLCO  |d OCL  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 1117862429  |a 1296854383  |a 1296894865  |a 1297455782 
020 |a 9783631753842  |q (electronic bk.) 
020 |a 3631753845  |q (electronic bk.) 
024 3 |a 9783631753842 
024 7 |a 10.3726/b13903  |2 doi 
029 1 |a AU@  |b 000065197698 
035 |a (OCoLC)1080470798  |z (OCoLC)1117862429  |z (OCoLC)1296854383  |z (OCoLC)1296894865  |z (OCoLC)1297455782 
037 |a 22573/ctv9gtv2r  |b JSTOR 
050 4 |a TK5105.88815 
082 0 4 |a 004.678  |2 23 
049 |a UAMI 
100 1 |a Wohlgenannt, Gerhard.  |4 aut 
245 1 0 |a Learning Ontology Relations by Combining Corpus-Based Techniques and Reasoning on Data from Semantic Web Sources  |c Gerhard Wohlgenannt. 
250 |a 1st, New ed. 
260 |a Frankfurt a.M.  |b Peter Lang GmbH, Internationaler Verlag der Wissenschaften  |c [2018], ©2011. 
300 |a 1 online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Forschungsergebnisse der Wirtschaftsuniversität Wien  |v 44. 
502 |a Thesis (Doctoral). 
505 0 |a Ontology learning fundamentals and techniques -- Overview of ontology relation detection and labeling methods -- A novel hybrid approach for labeling non-taxonomic relations which combines corpus-based methods with ontology reasoning based on Semantic Web sources -- Improved accuracy demonstrated with an extensive formal evaluation. 
520 |a The manual construction of formal domain conceptualizations (ontologies) is labor-intensive. Ontology learning, by contrast, provides (semi- )automatic ontology generation from input data such as domain text. This thesis proposes a novel approach for learning labels of non-taxonomic ontology relations. It combines corpus-based techniques with reasoning on Semantic Web data. Corpus-based methods apply vector space similarity of verbs co-occurring with labeled and unlabeled relations to calculate relation label suggestions from a set of candidates. A meta ontology in combination with Semantic Web sources such as DBpedia and OpenCyc allows reasoning to improve the suggested labels. An extensive formal evaluation demonstrates the superior accuracy of the presented hybrid approach. 
545 0 |a Gerhard Wohlgenannt is a senior researcher at the New Media Technology Department, MODUL University Vienna. He received his PhD from the Institute for Information Business at Vienna University of Economics and Business (WU). His research interests include ontology learning, text mining and the Semantic Web. 
588 0 |a Online resource; title from title screen (viewed December 28, 2018). 
590 |a JSTOR  |b Books at JSTOR Open Access 
590 |a JSTOR  |b Books at JSTOR All Purchased 
650 0 |a Conceptual structures (Information theory) 
650 0 |a Ontologies (Information retrieval) 
650 0 |a Expert systems (Computer science) 
650 0 |a Semantic Web. 
650 6 |a Structures conceptuelles. 
650 6 |a Ontologies (Recherche de l'information) 
650 6 |a Systèmes experts (Informatique) 
650 6 |a Web sémantique. 
650 7 |a Conceptual structures (Information theory)  |2 fast 
650 7 |a Expert systems (Computer science)  |2 fast 
650 7 |a Ontologies (Information retrieval)  |2 fast 
650 7 |a Semantic Web  |2 fast 
655 7 |a dissertations.  |2 aat 
655 7 |a Academic theses  |2 fast 
655 7 |a Academic theses.  |2 lcgft 
655 7 |a Thèses et écrits académiques.  |2 rvmgf 
776 0 8 |i Print version:  |z 9783631606513 
830 0 |a Free online access: JSTOR. 
856 4 0 |u https://jstor.uam.elogim.com/stable/10.2307/j.ctv9hj8nd  |z Texto completo 
938 |a Peter Lang  |b LANG  |n 9783631753842 
994 |a 92  |b IZTAP