Cargando…

Weil's conjecture for function fields. Volume I /

A central concern of number theory is the study of local-to-global principles, which describe the behavior of a global field K in terms of the behavior of various completions of K. This book looks at a specific example of a local-to-global principle: Weil's conjecture on the Tamagawa number of...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Gaitsgory, D. (Dennis) (Autor), Lurie, Jacob, 1977- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton : Princeton University Press, 2019.
Colección:Annals of mathematics studies ; no. 199.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 JSTOR_on1079759075
003 OCoLC
005 20231005004200.0
006 m o d
007 cr cnu|||unuuu
008 181220s2019 nju ob 000 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d N$T  |d EBLCP  |d OCLCF  |d JSTOR  |d YDX  |d DEGRU  |d OH1  |d OCLCQ  |d LGG  |d OCLCQ  |d IEEEE  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCQ  |d SFB  |d OCLCQ  |d YWS  |d OCLCO 
020 |a 9780691184432  |q (electronic bk.) 
020 |a 0691184437  |q (electronic bk.) 
020 |z 9780691182131 
029 1 |a AU@  |b 000065044105 
035 |a (OCoLC)1079759075 
037 |a 22573/ctv4t8349  |b JSTOR 
037 |a 9452475  |b IEEE 
050 4 |a QA564  |b .G347 2019 
072 7 |a MAT  |x 012000  |2 bisacsh 
072 7 |a MAT  |x 012010  |2 bisacsh 
072 7 |a MAT  |x 022000  |2 bisacsh 
082 0 4 |a 516.3/52  |2 23 
049 |a UAMI 
100 1 |a Gaitsgory, D.  |q (Dennis),  |e author. 
245 1 0 |a Weil's conjecture for function fields.  |n Volume I /  |c Dennis Gaitsgory, Jacob Lurie. 
264 1 |a Princeton :  |b Princeton University Press,  |c 2019. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Annals of mathematics studies ;  |v number 199 
588 |a Online resource; title from PDF title page (EBSCO, viewed December 21, 2018). 
504 |a Includes bibliographical references. 
505 0 |a The formalism of l-adic sheaves -- E∞-structures on l-adic cohomology -- Computing the trace of Frobenius -- The trace formula for BunG(X). 
520 |a A central concern of number theory is the study of local-to-global principles, which describe the behavior of a global field K in terms of the behavior of various completions of K. This book looks at a specific example of a local-to-global principle: Weil's conjecture on the Tamagawa number of a semisimple algebraic group G over K. In the case where K is the function field of an algebraic curve X, this conjecture counts the number of G-bundles on X (global information) in terms of the reduction of G at the points of X (local information). The goal of this book is to give a conceptual proof of Weil's conjecture, based on the geometry of the moduli stack of G-bundles. Inspired by ideas from algebraic topology, it introduces a theory of factorization homology in the setting ℓ-adic sheaves. Using this theory, Dennis Gaitsgory and Jacob Lurie articulate a different local-to-global principle: a product formula that expresses the cohomology of the moduli stack of G-bundles (a global object) as a tensor product of local factors. Using a version of the Grothendieck-Lefschetz trace formula, Gaitsgory and Lurie show that this product formula implies Weil's conjecture. The proof of the product formula will appear in a sequel volume. 
590 |a JSTOR  |b Books at JSTOR Demand Driven Acquisitions (DDA) 
590 |a JSTOR  |b Books at JSTOR Evidence Based Acquisitions 
590 |a JSTOR  |b Books at JSTOR All Purchased 
650 0 |a Weil conjectures. 
650 6 |a Conjectures de Weil. 
650 7 |a MATHEMATICS  |x Geometry  |x General.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Geometry  |x Algebraic.  |2 bisacsh 
650 7 |a Weil conjectures  |2 fast 
653 |a Frobenius automorphism. 
653 |a G-bundles. 
653 |a Grothendieck-Lefschetz. 
653 |a Weil's conjecture. 
653 |a Weill's conjecture. 
653 |a affine group. 
653 |a algebraic geometry. 
653 |a algebraic topology. 
653 |a analogue. 
653 |a cohomology. 
653 |a continuous Künneth decomposition. 
653 |a factorization homology. 
653 |a function fields. 
653 |a global "ient stacks. 
653 |a infinity. 
653 |a local-to-global principle. 
653 |a moduli stack. 
653 |a number theory. 
653 |a rational functions. 
653 |a sheaves. 
653 |a trace formula. 
653 |a triangulated category. 
700 1 |a Lurie, Jacob,  |d 1977-  |e author. 
830 0 |a Annals of mathematics studies ;  |v no. 199. 
856 4 0 |u https://jstor.uam.elogim.com/stable/10.2307/j.ctv4v32qc  |z Texto completo 
938 |a De Gruyter  |b DEGR  |n 9780691184432 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5620620 
938 |a EBSCOhost  |b EBSC  |n 1876800 
938 |a YBP Library Services  |b YANK  |n 15878110 
994 |a 92  |b IZTAP