Cargando…

How to Fall Slower Than Gravity : And Other Everyday (and Not So Everyday) Uses of Mathematics and Physical Reasoning /

An engaging collection of intriguing problems that shows you how to think like a mathematical physicistPaul Nahin is a master at explaining odd phenomena through straightforward mathematics. In this collection of twenty-six intriguing problems, he explores how mathematical physicists think. Always e...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Nahin, Paul J. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton : Princeton University Press, [2018]
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 JSTOR_on1053623326
003 OCoLC
005 20231005004200.0
006 m o d
007 cr cnu|||unuuu
008 180920s2018 nju o 001 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d N$T  |d EBLCP  |d OCLCF  |d YDX  |d DEGRU  |d OCLCQ  |d JSTOR  |d OCLCQ  |d UX1  |d IEEEE  |d OCLCQ  |d OCLCO  |d TEFOD  |d OCLCQ  |d OCLCO 
066 |c (S 
019 |a 1054224371  |a 1175632216 
020 |a 9780691185026  |q (electronic bk.) 
020 |a 0691185026  |q (electronic bk.) 
020 |a 9780691176918  |q (hardcover  |q acid-free paper) 
020 |a 0691176914 
035 |a (OCoLC)1053623326  |z (OCoLC)1054224371  |z (OCoLC)1175632216 
037 |a 22573/ctvc5zzzk  |b JSTOR 
037 |a 9452333  |b IEEE 
037 |a B80F7FB0-FB8E-414E-9014-3EDF44389C9F  |b OverDrive, Inc.  |n http://www.overdrive.com 
050 4 |a QA43 
072 7 |a MAT  |x 039000  |2 bisacsh 
072 7 |a MAT  |x 023000  |2 bisacsh 
072 7 |a MAT  |x 026000  |2 bisacsh 
072 7 |a MAT  |x 002000  |2 bisacsh 
072 7 |a MAT  |x 005000  |2 bisacsh 
072 7 |a MAT  |x 012000  |2 bisacsh 
072 7 |a MAT  |x 025000  |2 bisacsh 
072 7 |a MAT  |x 032000  |2 bisacsh 
072 7 |a SCI  |x 040000  |2 bisacsh 
082 0 4 |a 510.76  |2 23 
049 |a UAMI 
100 1 |a Nahin, Paul J.,  |e author. 
245 1 0 |a How to Fall Slower Than Gravity :  |b And Other Everyday (and Not So Everyday) Uses of Mathematics and Physical Reasoning /  |c Paul J. Nahin. 
264 1 |a Princeton :  |b Princeton University Press,  |c [2018] 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
500 |a Includes index. 
588 0 |a Vendor-supplied metadata. 
505 0 |6 880-01  |a Cover; Title; Copyright; Dedication; Contents; Preface; PART I. THE PROBLEMS; Problem 1. A Military Question: Catapult Warfare; Problem 2. A Seemingly Impossible Question: A Shocking Snow Conundrum; Problem 3. Two Math Problems: Algebra and Differential Equations Save the Day; Problem 4. An Escape Problem: Dodge the Truck; Problem 5. The Catapult Again: Where Dead Cows Can't Go!; Problem 6. Another Math Problem: This One Requires Calculus; Problem 7. If Theory Fails: Monte Carlo Simulation; Problem 8. Monte Carlo and Theory: The Drunkard's One-Dimensional Random Walk. 
505 8 |a Problem 9. More Monte Carlo: A Two-Dimensional Random Walk in ParisProblem 10. Flying with (and against) the Wind: Math for the Modern Traveler; Problem 11. A Combinatorial Problem with Physics Implications: Particles, Energy Levels, and Pauli Exclusion; Problem 12. Mathematical Analysis: By Physical Reasoning; Problem 13. When an Integral Blows Up: Can a Physical Quantity Really Be Infinite?; Problem 14. Is This Easier Than Falling Off a Log? Well, Maybe Not; Problem 15. When the Computer Fails: When Every Day Is a Birthday. 
505 8 |a Problem 16. When Intuition Fails: Sometimes What Feels Right, Just Isn'tProblem 17. Computer Simulation of the Physics of NASTYGLASS: Is This Serious? ... Maybe; Problem 18. The Falling-Raindrop, Variable-Mass Problem: Falling Slower Than Gravity; Problem 19. Beyond the Quadratic: A Cubic Equation and Discontinuous Behavior in a Physical System; Problem 20. Another Cubic Equation: This One Inspired by Jules Verne; Problem 21. Beyond the Cubic: Quartic Equations, Crossed Ladders, Undersea Rocket Launches, and Quintic Equations. 
505 8 |a Appendix 3. Landen's Calculus Solution to the Depressed Cubic EquationAppendix 4. Solution to Lord Rayleigh's Rotating-Ring Problem of 1876; Acknowledgments; Index; Also by Paul J. Nahin. 
520 |a An engaging collection of intriguing problems that shows you how to think like a mathematical physicistPaul Nahin is a master at explaining odd phenomena through straightforward mathematics. In this collection of twenty-six intriguing problems, he explores how mathematical physicists think. Always entertaining, the problems range from ancient catapult conundrums to the puzzling physics of a very peculiar kind of glass called NASTYGLASS--and from dodging trucks to why raindrops fall slower than the rate of gravity. The questions raised may seem impossible to answer at first and may require an unexpected twist in reasoning, but sometimes their solutions are surprisingly simple. Nahin's goal, however, is always to guide readers--who will need only to have studied advanced high school math and physics--in expanding their mathematical thinking to make sense of the curiosities of the physical world. The problems are in the first part of the book and the solutions are in the second, so that readers may challenge themselves to solve the questions on their own before looking at the explanations. The problems show how mathematics--including algebra, trigonometry, geometry, and calculus--can be united with physical laws to solve both real and theoretical problems. Historical anecdotes woven throughout the book bring alive the circumstances and people involved in some amazing discoveries and achievements. More than a puzzle book, this work will immerse you in the delights of scientific history while honing your math skills. 
590 |a JSTOR  |b Books at JSTOR Demand Driven Acquisitions (DDA) 
590 |a JSTOR  |b Books at JSTOR All Purchased 
590 |a JSTOR  |b Books at JSTOR Evidence Based Acquisitions 
650 0 |a Mathematics  |v Problems, exercises, etc. 
650 0 |a Reasoning. 
650 7 |a MATHEMATICS  |x Essays.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Pre-Calculus.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Reference.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Algebra  |x General.  |2 bisacsh 
650 7 |a Mathematics  |2 fast 
650 7 |a Reasoning  |2 fast 
655 2 |a Problems and Exercises 
655 7 |a exercise books.  |2 aat 
655 7 |a Problems and exercises  |2 fast 
655 7 |a Problems and exercises.  |2 lcgft 
655 7 |a Problèmes et exercices.  |2 rvmgf 
776 0 8 |i Print version:  |a Nahin, Paul J.  |t How to Fall Slower Than Gravity.  |d Princeton : Princeton University Press, [2018]  |w (DLC) 2018936898 
856 4 0 |u https://jstor.uam.elogim.com/stable/10.2307/j.ctvc774cp  |z Texto completo 
880 8 |6 505-01/(S  |a Problem 22. Escaping an Atomic Explosion: Why the Enola Gay SurvivedProblem 23. "Impossible'' Math Made Easy: Gauss's Congruence Arithmetic; Problem 24. Wizard Math: Fourier's Series, Dirac's Impulse, and Euler's Zeta Function; Problem 25. The Euclidean Algorithm: The Zeta Function and Computer Science; Problem 26. One Last Quadratic: Heaviside Locates an Underwater Fish Bite!; PART II. THE SOLUTIONS; Appendix 1. MATLAB, Primes, Irrationals, and Continued Fractions; Appendix 2. A Derivation of Brouncker's Continued Fraction for 4/π. 
938 |a YBP Library Services  |b YANK  |n 15711017 
938 |a EBSCOhost  |b EBSC  |n 1825333 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5516498 
938 |a De Gruyter  |b DEGR  |n 9780691185026 
994 |a 92  |b IZTAP