Cargando…

Demographic forecasting /

Demographic Forecasting introduces new statistical tools that can greatly improve forecasts of population death rates. Mortality forecasting is used in a wide variety of academic fields, and for policymaking in global health, social security and retirement planning, and other areas. Federico Girosi...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Girosi, Federico
Otros Autores: King, Gary, 1958-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton : Princeton University Press, [2008]
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 JSTOR_on1041853917
003 OCoLC
005 20231005004200.0
006 m o d
007 cr cnu---unuuu
008 180625s2008 njua ob 001 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d N$T  |d JSTOR  |d OCLCF  |d LVT  |d MM9  |d P@U  |d UX1  |d UHL  |d OCLCQ  |d VT2  |d OCLCA  |d YDX  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCL  |d OCLCQ 
015 |a GBA877776  |2 bnb 
016 7 |a 014646820  |2 Uk 
019 |a 1042084658  |a 1132226069  |a 1175631662  |a 1228619208 
020 |a 9780691186788  |q (electronic bk.) 
020 |a 0691186782  |q (electronic bk.) 
020 |z 9780691130941 
020 |z 0691130949 
020 |z 9780691130958 
020 |z 0691130957 
029 1 |a AU@  |b 000067043331 
035 |a (OCoLC)1041853917  |z (OCoLC)1042084658  |z (OCoLC)1132226069  |z (OCoLC)1175631662  |z (OCoLC)1228619208 
037 |a 22573/ctv322cpf  |b JSTOR 
050 4 |a HB1321  |b .K56 2008eb 
060 4 |a HB 1321 G57d 2008 
072 7 |a SOC  |x 006000  |2 bisacsh 
072 7 |a SOC  |x 027000  |2 bisacsh 
082 0 4 |a 304.6/40112  |2 22 
084 |a MR 2100  |2 rvk 
084 |a MS 4200  |2 rvk 
084 |a QH 253  |2 rvk 
084 |a QU 000  |2 rvk 
049 |a UAMI 
100 1 |a Girosi, Federico. 
245 1 0 |a Demographic forecasting /  |c Federico Girosi and Gary King ; with contributions from Kevin Quinn and Gregory Wawro. 
264 1 |a Princeton :  |b Princeton University Press,  |c [2008] 
264 4 |c ©2008 
300 |a 1 online resource (xviii, 267 pages) :  |b illustrations (some color) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
505 0 |a Qualitative view -- Existing methods for forecasting mortality. Methods without covariates ; Methods with covariates -- Statistical modeling. The model ; Priors over grouped continuous variables ; Model selection ; Adding priors over time and space ; Comparisons and extensions -- Estimation. Markov Chain Monte Carlo estimation ; Fast estimation without Markov Chains -- Empirical evidence. Illustrative analyses ; Comparative analyses ; Concluding remarks ; A. Notation -- B. Mathematical refresher -- C. Improper normal priors -- D. Discretization of the derivative operator -- E. Smoothness over graphs. 
504 |a Includes bibliographical references (pages 251-257) and index. 
588 0 |a Print version record. 
520 |a Demographic Forecasting introduces new statistical tools that can greatly improve forecasts of population death rates. Mortality forecasting is used in a wide variety of academic fields, and for policymaking in global health, social security and retirement planning, and other areas. Federico Girosi and Gary King provide an innovative framework for forecasting age-sex-country-cause-specific variables that makes it possible to incorporate more information than standard approaches. These new methods more generally make it possible to include different explanatory variables in a time-series regression for each cross section while still borrowing strength from one regression to improve the estimation of all. The authors show that many existing Bayesian models with explanatory variables use prior densities that incorrectly formalize prior knowledge, and they show how to avoid these problems. They also explain how to incorporate a great deal of demographic knowledge into models with many fewer adjustable parameters than classic Bayesian approaches, and develop models with Bayesian priors in the presence of partial prior ignorance. By showing how to include more information in statistical models, Demographic Forecasting carries broad statistical implications for social scientists, statisticians, demographers, public-health experts, policymakers, and industry analysts. Introduces methods to improve forecasts of mortality rates and similar variables Provides innovative tools for more effective statistical modeling Makes available free open-source software and replication data Includes full-color graphics, a complete glossary of symbols, a self-contained math refresher, and more. 
590 |a JSTOR  |b Books at JSTOR Demand Driven Acquisitions (DDA) 
590 |a JSTOR  |b Books at JSTOR All Purchased 
590 |a JSTOR  |b Books at JSTOR Evidence Based Acquisitions 
650 0 |a Mortality  |x Forecasting  |x Methodology. 
650 0 |a Mortality  |x Statistical methods. 
650 0 |a Demography. 
650 0 |a Mortality. 
650 1 2 |a Forecasting  |x methods 
650 1 2 |a Mortality 
650 2 2 |a Models, Statistical 
650 2 |a Demography 
650 6 |a Mortalité  |x Prévision  |x Méthodologie. 
650 6 |a Mortalité  |x Méthodes statistiques. 
650 6 |a Démographie. 
650 6 |a Mortalité. 
650 7 |a demography.  |2 aat 
650 7 |a mortality.  |2 aat 
650 7 |a SOCIAL SCIENCE  |x Demography.  |2 bisacsh 
650 7 |a SOCIAL SCIENCE  |x Statistics.  |2 bisacsh 
650 7 |a Mortality.  |2 fast  |0 (OCoLC)fst01026502 
650 7 |a Demography.  |2 fast  |0 (OCoLC)fst00890158 
650 7 |a Mortality  |x Forecasting  |x Methodology.  |2 fast  |0 (OCoLC)fst01026510 
650 7 |a Mortality  |x Statistical methods.  |2 fast  |0 (OCoLC)fst01026528 
700 1 |a King, Gary,  |d 1958- 
776 0 8 |i Print version:  |a Girosi, Federico.  |t Demographic forecasting.  |d Princeton : Princeton University Press, ©2008  |z 9780691130941  |w (DLC) 2008062102  |w (OCoLC)213223859 
856 4 0 |u https://jstor.uam.elogim.com/stable/10.2307/j.ctv301hd6  |z Texto completo 
938 |a EBSCOhost  |b EBSC  |n 1837081 
938 |a Project MUSE  |b MUSE  |n muse70815 
938 |a YBP Library Services  |b YANK  |n 15563404 
994 |a 92  |b IZTAP