Cargando…

Mathematical foundations of quantum mechanics /

Quantum mechanics was still in its infancy in 1932 when the young John von Neumann, who would go on to become one of the greatest mathematicians of the twentieth century, published 'Mathematical Foundations of Quantum Mechanics', a revolutionary work that for the first time provided a rigo...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Neumann, John von
Otros Autores: Wheeler, Nicholas A. (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton : Princeton University Press : Princeton University Press, [2018]
Edición:New edition.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Machine generated contents note: ch. I Introductory Considerations
  • 1. Origin of the Transformation Theory
  • 2. Original Formulations of Quantum Mechanics
  • 3. Equivalence of the Two Theories: The Transformation Theory
  • 4. Equivalence of the Two Theories: Hilbert Space
  • ch. II Abstract Hilbert Space
  • 1. Definition of Hilbert Space
  • 2. Geometry of Hilbert Space
  • 3. Digression on the Conditions A-E
  • 4. Closed Linear Manifolds
  • 5. Operators in Hilbert Space
  • 6. Eigenvalue Problem
  • 7. Continuation
  • 8. Initial Considerations Concerning the Eigenvalue Problem
  • 9. Digression on the Existence and Uniqueness of the Solutions of the Eigenvalue Problem
  • 10. Commutative Operators
  • 11. Trace
  • ch. III Quantum Statistics
  • 1. Statistical Assertions of Quantum Mechanics
  • 2. Statistical Interpretation
  • 3. Simultaneous Measurability and Measurability in General
  • 4. Uncertainty Relations
  • 5. Projections as Propositions
  • 6. Radiation Theory
  • ch. IV Deductive Development of the Theory
  • 1. Fundamental Basis of the Statistical Theory
  • 2. Proof of the Statistical Formulas
  • 3. Conclusions from Experiments
  • ch. V General Considerations
  • 1. Measurement and Reversibility
  • 2. Thermodynamic Considerations
  • 3. Reversibility and Equilibrium Problems
  • 4. Macroscopic Measurement
  • ch. VI Measuring Process
  • 1. Formulation of the Problem
  • 2. Composite Systems
  • 3. Discussion of the Measuring Process.