Cargando…

Mathematical foundations of quantum mechanics /

Quantum mechanics was still in its infancy in 1932 when the young John von Neumann, who would go on to become one of the greatest mathematicians of the twentieth century, published 'Mathematical Foundations of Quantum Mechanics', a revolutionary work that for the first time provided a rigo...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Neumann, John von
Otros Autores: Wheeler, Nicholas A. (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton : Princeton University Press : Princeton University Press, [2018]
Edición:New edition.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 JSTOR_on1021172445
003 OCoLC
005 20231005004200.0
006 m o d
007 cr cnu|||unuuu
008 180201s2018 nju ob 001 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d JSTOR  |d N$T  |d OCLCF  |d NRC  |d UWO  |d INT  |d STBDS  |d OCLCQ  |d OCLCO  |d WYU  |d OCLCQ  |d LEAUB  |d UKAHL  |d OCLCQ  |d OCLCO  |d OCLCQ  |d SFB  |d OCLCQ  |d OCLCO 
020 |a 9781400889921  |q (electronic bk.) 
020 |a 1400889928  |q (electronic bk.) 
020 |a 0691178577 
020 |a 9780691178578 
020 |a 0691178569 
020 |a 9780691178561 
020 |z 9780691178578 
020 |z 9780691178561 
029 1 |a AU@  |b 000061963150 
029 1 |a AU@  |b 000067036547 
035 |a (OCoLC)1021172445 
037 |a 22573/ctt1wq953t  |b JSTOR 
050 4 |a QC174.3  |b .V613 2018eb 
072 7 |a MAT000000  |2 bisacsh 
072 7 |a SCI057000  |2 bisacsh 
072 7 |a SCI  |x 024000  |2 bisacsh 
072 7 |a SCI  |x 041000  |2 bisacsh 
072 7 |a SCI  |x 055000  |2 bisacsh 
082 0 4 |a 530.1  |2 23 
049 |a UAMI 
100 1 |a Neumann, John von. 
245 1 0 |a Mathematical foundations of quantum mechanics /  |c by John von Neumann ; translated from the German by Robert T. Beyer ; edited by Nicholas A. Wheeler. 
250 |a New edition. 
264 1 |a Princeton :  |b Princeton University Press :  |b Princeton University Press,  |c [2018] 
264 4 |c ©2018 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
588 0 |a Online resource; title from PDF title page (EBSCO, viewed February 7, 2018). 
505 0 0 |g Machine generated contents note:  |g ch. I  |t Introductory Considerations --  |g 1.  |t Origin of the Transformation Theory --  |g 2.  |t Original Formulations of Quantum Mechanics --  |g 3.  |t Equivalence of the Two Theories: The Transformation Theory --  |g 4.  |t Equivalence of the Two Theories: Hilbert Space --  |g ch. II  |t Abstract Hilbert Space --  |g 1.  |t Definition of Hilbert Space --  |g 2.  |t Geometry of Hilbert Space --  |g 3.  |t Digression on the Conditions A-E --  |g 4.  |t Closed Linear Manifolds --  |g 5.  |t Operators in Hilbert Space --  |g 6.  |t Eigenvalue Problem --  |g 7.  |t Continuation --  |g 8.  |t Initial Considerations Concerning the Eigenvalue Problem --  |g 9.  |t Digression on the Existence and Uniqueness of the Solutions of the Eigenvalue Problem --  |g 10.  |t Commutative Operators --  |g 11.  |t Trace --  |g ch. III  |t Quantum Statistics --  |g 1.  |t Statistical Assertions of Quantum Mechanics --  |g 2.  |t Statistical Interpretation --  |g 3.  |t Simultaneous Measurability and Measurability in General --  |g 4.  |t Uncertainty Relations --  |g 5.  |t Projections as Propositions --  |g 6.  |t Radiation Theory --  |g ch. IV  |t Deductive Development of the Theory --  |g 1.  |t Fundamental Basis of the Statistical Theory --  |g 2.  |t Proof of the Statistical Formulas --  |g 3.  |t Conclusions from Experiments --  |g ch. V  |t General Considerations --  |g 1.  |t Measurement and Reversibility --  |g 2.  |t Thermodynamic Considerations --  |g 3.  |t Reversibility and Equilibrium Problems --  |g 4.  |t Macroscopic Measurement --  |g ch. VI  |t Measuring Process --  |g 1.  |t Formulation of the Problem --  |g 2.  |t Composite Systems --  |g 3.  |t Discussion of the Measuring Process. 
520 8 |a Quantum mechanics was still in its infancy in 1932 when the young John von Neumann, who would go on to become one of the greatest mathematicians of the twentieth century, published 'Mathematical Foundations of Quantum Mechanics', a revolutionary work that for the first time provided a rigorous mathematical framework for the new science. Robert Beyer's 1955 English translation, which von Neumann reviewed and approved, is cited more frequently today than ever before. But its many treasures and insights were too often obscured by the limitations of the way the text and equations were set on the page. This new edition of this classic work has been completely reset in TeX, making the text and equations far easier to read. 
590 |a JSTOR  |b Books at JSTOR Demand Driven Acquisitions (DDA) 
590 |a JSTOR  |b Books at JSTOR All Purchased 
590 |a JSTOR  |b Books at JSTOR Evidence Based Acquisitions 
650 0 |a Matrix mechanics. 
650 6 |a Mécanique des matrices. 
650 7 |a MATHEMATICS  |x General.  |2 bisacsh 
650 7 |a SCIENCE  |x Energy.  |2 bisacsh 
650 7 |a SCIENCE  |x Mechanics  |x General.  |2 bisacsh 
650 7 |a SCIENCE  |x Physics  |x General.  |2 bisacsh 
650 7 |a Matrix mechanics  |2 fast 
653 0 |a Matrix mechanics 
700 1 |a Wheeler, Nicholas A.,  |e editor. 
856 4 0 |u https://jstor.uam.elogim.com/stable/10.2307/j.ctt1wq8zhp  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH33872683 
938 |a EBSCOhost  |b EBSC  |n 1629183 
938 |a Oxford University Press USA  |b OUPR  |n EDZ0001919527 
994 |a 92  |b IZTAP