Cargando…

Reverse mathematics : proofs from the inside out /

"This book presents reverse mathematics to a general mathematical audience for the first time. Reverse mathematics is a new field that answers some old questions. In the two thousand years that mathematicians have been deriving theorems from axioms, it has often been asked: which axioms are nee...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Stillwell, John (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton : Princeton University Press, [2018]
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 JSTOR_on1012849815
003 OCoLC
005 20231005004200.0
006 m o d
007 cr |||||||||||
008 171124s2018 njua ob 001 0 eng d
040 |a IDEBK  |b eng  |e rda  |e pn  |c IDEBK  |d N$T  |d EBLCP  |d YDX  |d CNCGM  |d MNW  |d MUU  |d IDB  |d NRC  |d INT  |d DEGRU  |d AU@  |d TSC  |d OCLCQ  |d WYU  |d OCLCQ  |d JSTOR  |d OCLCQ  |d MM9  |d UX1  |d OCLCQ  |d IEEEE  |d OCLCQ  |d OCLCO  |d OCLCQ  |d SFB  |d OCLCQ  |d OCLCO 
066 |c (S 
019 |a 1162046061  |a 1175629450 
020 |a 1400889030  |q (electronic bk.) 
020 |a 9781400889037 
020 |z 9780691177175  |q (hardcover  |q alk. paper) 
020 |z 0691177171  |q (hardcover  |q alk. paper) 
029 1 |a AU@  |b 000061388128 
029 1 |a GBVCP  |b 1011003759 
029 1 |a AU@  |b 000062004912 
029 1 |a AU@  |b 000062577688 
029 1 |a AU@  |b 000065054106 
029 1 |a AU@  |b 000067043333 
035 |a (OCoLC)1012849815  |z (OCoLC)1162046061  |z (OCoLC)1175629450 
037 |a 1050470  |b MIL 
037 |a 22573/ctvc66xk3  |b JSTOR 
037 |a 9452339  |b IEEE 
050 4 |a QA9.25 
072 7 |a MAT  |x 000000  |2 bisacsh 
072 7 |a MAT  |x 015000  |2 bisacsh 
072 7 |a MAT  |x 018000  |2 bisacsh 
072 7 |a MAT  |x 034000  |2 bisacsh 
072 7 |a SCI  |x 034000  |2 bisacsh 
082 0 4 |a 511.3  |2 23 
084 |a MAT015000  |a MAT000000  |a MAT018000  |a SCI034000  |2 bisacsh 
049 |a UAMI 
100 1 |a Stillwell, John,  |e author. 
245 1 0 |a Reverse mathematics :  |b proofs from the inside out /  |c John Stillwell. 
264 1 |a Princeton :  |b Princeton University Press,  |c [2018] 
264 4 |c ©2018 
300 |a 1 online resource (xiii, 182 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
505 0 |6 880-01  |a Historical introduction -- Classical arithmetization -- Classical analysis -- Computability -- Arithmetization of computation -- Arithmetical comprehension -- Recursive comprehension -- A bigger picture. 
520 |a "This book presents reverse mathematics to a general mathematical audience for the first time. Reverse mathematics is a new field that answers some old questions. In the two thousand years that mathematicians have been deriving theorems from axioms, it has often been asked: which axioms are needed to prove a given theorem? Only in the last two hundred years have some of these questions been answered, and only in the last forty years has a systematic approach been developed. In Reverse Mathematics, John Stillwell gives a representative view of this field, emphasizing basic analysis--finding the "right axioms" to prove fundamental theorems--and giving a novel approach to logic. Stillwell introduces reverse mathematics historically, describing the two developments that made reverse mathematics possible, both involving the idea of arithmetization. The first was the nineteenth-century project of arithmetizing analysis, which aimed to define all concepts of analysis in terms of natural numbers and sets of natural numbers. The second was the twentieth-century arithmetization of logic and computation. Thus arithmetic in some sense underlies analysis, logic, and computation. Reverse mathematics exploits this insight by viewing analysis as arithmetic extended by axioms about the existence of infinite sets. Remarkably, only a small number of axioms are needed for reverse mathematics, and, for each basic theorem of analysis, Stillwell finds the "right axiom" to prove it. By using a minimum of mathematical logic in a well-motivated way, Reverse Mathematics will engage advanced undergraduates and all mathematicians interested in the foundations of mathematics."--  |c Provided by publisher 
588 0 |a Online resource; title from electronic title page (EBSCOHost, viewed March 14, 2018). 
590 |a JSTOR  |b Books at JSTOR Evidence Based Acquisitions 
590 |a JSTOR  |b Books at JSTOR All Purchased 
590 |a JSTOR  |b Books at JSTOR Demand Driven Acquisitions (DDA) 
650 0 |a Reverse mathematics. 
650 6 |a Mathématiques à rebours. 
650 7 |a MATHEMATICS  |x General.  |2 bisacsh 
650 7 |a Reverse mathematics  |2 fast 
776 0 8 |i Print version:  |a Stillwell, John.  |t Reverse mathematics.  |d Princeton, New Jersey : Princeton University Press, [2018]  |z 9780691177175  |w (DLC) 2017025264  |w (OCoLC)983825003 
856 4 0 |u https://jstor.uam.elogim.com/stable/10.2307/j.ctvc772m5  |z Texto completo 
880 0 0 |6 505-01/(S  |g Machine generated contents note:  |g 1.  |t Historical Introduction --  |g 1.1.  |t Euclid and the Parallel Axiom --  |g 1.2.  |t Spherical and Non-Euclidean Geometry --  |g 1.3.  |t Vector Geometry --  |g 1.4.  |t Hilbert's Axioms --  |g 1.5.  |t Well-ordering and the Axiom of Choice --  |g 1.6.  |t Logic and Computability --  |g 2.  |t Classical Arithmetization --  |g 2.1.  |t From Natural to Rational Numbers --  |g 2.2.  |t From Rationals to Reals --  |g 2.3.  |t Completeness Properties of R --  |g 2.4.  |t Functions and Sets --  |g 2.5.  |t Continuous Functions --  |g 2.6.  |t Peano Axioms --  |g 2.7.  |t Language of PA --  |g 2.8.  |t Arithmetically Definable Sets --  |g 2.9.  |t Limits of Arithmetization --  |g 3.  |t Classical Analysis --  |g 3.1.  |t Limits --  |g 3.2.  |t Algebraic Properties of Limits --  |g 3.3.  |t Continuity and Intermediate Values --  |g 3.4.  |t Bolzano-Weierstrass Theorem --  |g 3.5.  |t Heine-Borel Theorem --  |g 3.6.  |t Extreme Value Theorem --  |g 3.7.  |t Uniform Continuity --  |g 3.8.  |t Cantor Set --  |g 3.9.  |t Trees in Analysis --  |g 4.  |t Computability --  |g 4.1.  |t Computability and Church's Thesis --  |g 4.2.  |t Halting Problem --  |g 4.3.  |t Computably Enumerable Sets --  |g 4.4.  |t Computable Sequences in Analysis --  |g 4.5.  |t Computable Tree with No Computable Path --  |g 4.6.  |t Computability and Incompleteness --  |g 4.7.  |t Computability and Analysis --  |g 5.  |t Arithmetization of Computation --  |g 5.1.  |t Formal Systems --  |g 5.2.  |t Smullyan's Elementary Formal Systems --  |g 5.3.  |t Notations for Positive Integers --  |g 5.4.  |t Turing's Analysis of Computation --  |g 5.5.  |t Operations on EFS-Generated Sets --  |g 5.6.  |t Generating Σ01 Sets --  |g 5.7.  |t EFS for Σ01 Relations --  |g 5.8.  |t Arithmetizing Elementary Formal Systems --  |g 5.9.  |t Arithmetizing Computable Enumeration --  |g 5.10.  |t Arithmetizing Computable Analysis --  |g 6.  |t Arithmetical Comprehension --  |g 6.1.  |t Axiom System ACA0 --  |g 6.2.  |t Σ01 and Arithmetical Comprehension --  |g 6.3.  |t Completeness Properties in ACA0 --  |g 6.4.  |t Arithmetization of Trees --  |g 6.5.  |t Konig Infinity Lemma --  |g 6.6.  |t Ramsey Theory --  |g 6.7.  |t Some Results from Logic --  |g 6.8.  |t Peano Arithmetic in ACA0 --  |g 7.  |t Recursive Comprehension --  |g 7.1.  |t Axiom System RCA0 --  |g 7.2.  |t Real Numbers and Continuous Functions --  |g 7.3.  |t Intermediate Value Theorem --  |g 7.4.  |t Cantor Set Revisited --  |g 7.5.  |t From Heine-Borel to Weak Konig Lemma --  |g 7.6.  |t From Weak Konig Lemma to Heine-Borel --  |g 7.7.  |t Uniform Continuity --  |g 7.8.  |t From Weak Konig to Extreme Value --  |g 7.9.  |t Theorems of WKL0 --  |g 7.10.  |t WKL0, ACA0, and Beyond --  |g 8.  |t Bigger Picture --  |g 8.1.  |t Constructive Mathematics --  |g 8.2.  |t Predicate Logic --  |g 8.3.  |t Varieties of Incompleteness --  |g 8.4.  |t Computability --  |g 8.5.  |t Set Theory --  |g 8.6.  |t Concepts of "Depth." 
938 |a EBSCOhost  |b EBSC  |n 1550094 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis39138779 
938 |a EBL - Ebook Library  |b EBLB  |n EBL5199840 
938 |a YBP Library Services  |b YANK  |n 14643228 
938 |a De Gruyter  |b DEGR  |n 9781400889037 
994 |a 92  |b IZTAP