Cargando…

Calculus /

Since first publication in 1954, this text has been widely used in North American universities in introductory courses in science and engineering. It is a streamlined text, in which essential ideas are not buried in endless detail.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Jeffery, R. L. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Toronto] : University of Toronto Press, 1960.
Edición:Third edition.
Colección:Heritage.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 JSTOR_on1005849085
003 OCoLC
005 20231005004200.0
006 m o d
007 cr |||||||||||
008 171011s1960 onc o 000 0 eng d
010 |z  61002163  
040 |a YDX  |b eng  |e pn  |c YDX  |d N$T  |d EBLCP  |d JSTOR  |d OCLCF  |d MERUC  |d BTN  |d SNK  |d CELBN  |d CNLAK  |d OCLCQ  |d S9I  |d OCLCQ  |d OCLCO  |d INARC  |d OCLCQ  |d P@U  |d OCLCQ  |d OCLCO 
019 |a 1005971810  |a 1006411925  |a 1264760314  |a 1301791485 
020 |a 1487599978  |q (electronic bk.) 
020 |a 9781487599973  |q (electronic bk.) 
020 |z 0802020267 
020 |z 9780802020260 
029 1 |a AU@  |b 000062537632 
035 |a (OCoLC)1005849085  |z (OCoLC)1005971810  |z (OCoLC)1006411925  |z (OCoLC)1264760314  |z (OCoLC)1301791485 
037 |a 22573/ctt1vx032d  |b JSTOR 
050 4 |a QA303  |b .J5 1960 
072 7 |a MAT  |x 005000  |2 bisacsh 
082 0 4 |a 515  |2 23 
049 |a UAMI 
100 1 |a Jeffery, R. L.,  |e author. 
245 1 0 |a Calculus /  |c R.L. Jeffery. 
250 |a Third edition. 
260 |a Toronto] :  |b University of Toronto Press,  |c 1960. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file  |2 rda 
490 1 |a Heritage 
505 0 |a Cover -- Contents -- PREFACE -- PREFACE TO THE THIRD EDITION -- INTRODUCTION -- 0.1 The real number system -- 0.2 Decimal representation of rational numbers -- 0.3 Decimals which are neither finite nor repeating -- 0.4 Definition of real numbers in terms of rational numbers -- 0.5 The number scale -- 0.6 The rational points are dense on 1 -- 0.7 Points on the number scale not marked with rational points -- 0.8 Real numbers and their properties -- 0.9 Assumptions and working rules -- 0.10 Functions and functional relations -- 0.11 The double use of symbols 
505 8 |a 0.12 The Greek alphabetI: SPEED AND LIMITS -- 1.1 The idea of speed -- 1.2 Speed at a point -- 1.3 The idea of limit -- 1.4 Properties of limits -- 1.5 Improvements in notation -- II: THE DERIVATIVE OF A FUNCTION -- 2.1 The derivative of a function -- 2.2 The derivative as the slope of the tangent line to a curve -- 2.3 The four step rule -- 2.4 The limit of a ratio when both numerator and denominator tend to zero -- III: RULES AND FORMULAS FOR DIFFERENTIATION -- 3.1 Rules for differentiation -- 3.2 Formulas for differentiation 
505 8 |a 3.3 Proofs of formulas for differentiation3.4 The derivative of the square root of a function -- 3.5 The derivatives of functions which are defined implicitly -- IV: DIFFERENTIALS, DIFFERENTIAL EQUATIONS AND ANTI-DIFFERENTIALS -- 4.1 Definition and geometrical interpretation of a differential -- 4.2 Relations between dy and Î#x94;y -- 4.3 Functions with vanishing derivatives -- 4.4 The fundamental theorem of the differential calculus -- 4.5 Two theorems on differentials -- 4.6 Some further applications of differentials -- 4.7 Differential relations 
505 8 |a 4.8 Rules for determining differentials4.9 Anti-differentials -- 4.10 Formulas for anti-differentials -- V: THE DEFINITE INTEGRAL -- 5.1 The definite integral -- 5.2 Continuous function -- 5.3 Definition of continuity -- 5.4 Maximum and minimum values of a function -- 5.5 Assumptions regarding the behaviour of continuous functions -- 5.6 Sequences of numbers -- 5.7 Notations for sums -- 5.8 Areas and volumes -- 5.9 A problem on area -- 5.10 The definition of the definite integral -- 5.11 The fundamental theorem of the integral calculus 
505 8 |a 5.12 The solution of the area problem of  5.9 5.13 The symbol for the definite integral -- 5.14 The double use of symbols -- 5.15 The existence of the definite integral -- 5.16 The definite integral of continuous functions -- 5.17 Abbreviated methods -- 5.18 Area as a function of the variable x and the double meaning of the symbol dA -- 5.19 The existence of the definite integral of a continuous function -- 5.20 The indefinite integral -- 5.21 The fundamental theorem of the integral calculus -- VI: THE TRANSCENDENTAL FUNCTIONS -- 6.1 Transcendental functions 
520 |a Since first publication in 1954, this text has been widely used in North American universities in introductory courses in science and engineering. It is a streamlined text, in which essential ideas are not buried in endless detail. 
590 |a JSTOR  |b Books at JSTOR Demand Driven Acquisitions (DDA) 
590 |a JSTOR  |b Books at JSTOR All Purchased 
590 |a JSTOR  |b Books at JSTOR Evidence Based Acquisitions 
650 0 |a Calculus. 
650 6 |a Calcul infinitésimal. 
650 7 |a calculus.  |2 aat 
650 7 |a MATHEMATICS  |x Calculus.  |2 bisacsh 
650 7 |a Calculus  |2 fast 
776 0 8 |i Print version:  |a Jeffery, Ralph, L.  |t Calculus (Third Edition).  |d Toronto : University of Toronto Press, ©1960  |z 9781487592059 
830 0 |a Heritage. 
856 4 0 |u https://jstor.uam.elogim.com/stable/10.3138/j.ctt1vxm93w  |z Texto completo 
938 |a Project MUSE  |b MUSE  |n musev2_107886 
938 |a Canadian Electronic Library  |b CELB  |n 454148 
938 |a EBL - Ebook Library  |b EBLB  |n EBL5092310 
938 |a EBSCOhost  |b EBSC  |n 1613308 
938 |a YBP Library Services  |b YANK  |n 14875802 
938 |a Internet Archive  |b INAR  |n calculus0000jeff 
994 |a 92  |b IZTAP