|
|
|
|
LEADER |
00000cam a2200000Mi 4500 |
001 |
JSTOR_on1005849085 |
003 |
OCoLC |
005 |
20231005004200.0 |
006 |
m o d |
007 |
cr ||||||||||| |
008 |
171011s1960 onc o 000 0 eng d |
010 |
|
|
|z 61002163
|
040 |
|
|
|a YDX
|b eng
|e pn
|c YDX
|d N$T
|d EBLCP
|d JSTOR
|d OCLCF
|d MERUC
|d BTN
|d SNK
|d CELBN
|d CNLAK
|d OCLCQ
|d S9I
|d OCLCQ
|d OCLCO
|d INARC
|d OCLCQ
|d P@U
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 1005971810
|a 1006411925
|a 1264760314
|a 1301791485
|
020 |
|
|
|a 1487599978
|q (electronic bk.)
|
020 |
|
|
|a 9781487599973
|q (electronic bk.)
|
020 |
|
|
|z 0802020267
|
020 |
|
|
|z 9780802020260
|
029 |
1 |
|
|a AU@
|b 000062537632
|
035 |
|
|
|a (OCoLC)1005849085
|z (OCoLC)1005971810
|z (OCoLC)1006411925
|z (OCoLC)1264760314
|z (OCoLC)1301791485
|
037 |
|
|
|a 22573/ctt1vx032d
|b JSTOR
|
050 |
|
4 |
|a QA303
|b .J5 1960
|
072 |
|
7 |
|a MAT
|x 005000
|2 bisacsh
|
082 |
0 |
4 |
|a 515
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Jeffery, R. L.,
|e author.
|
245 |
1 |
0 |
|a Calculus /
|c R.L. Jeffery.
|
250 |
|
|
|a Third edition.
|
260 |
|
|
|a Toronto] :
|b University of Toronto Press,
|c 1960.
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a data file
|2 rda
|
490 |
1 |
|
|a Heritage
|
505 |
0 |
|
|a Cover -- Contents -- PREFACE -- PREFACE TO THE THIRD EDITION -- INTRODUCTION -- 0.1 The real number system -- 0.2 Decimal representation of rational numbers -- 0.3 Decimals which are neither finite nor repeating -- 0.4 Definition of real numbers in terms of rational numbers -- 0.5 The number scale -- 0.6 The rational points are dense on 1 -- 0.7 Points on the number scale not marked with rational points -- 0.8 Real numbers and their properties -- 0.9 Assumptions and working rules -- 0.10 Functions and functional relations -- 0.11 The double use of symbols
|
505 |
8 |
|
|a 0.12 The Greek alphabetI: SPEED AND LIMITS -- 1.1 The idea of speed -- 1.2 Speed at a point -- 1.3 The idea of limit -- 1.4 Properties of limits -- 1.5 Improvements in notation -- II: THE DERIVATIVE OF A FUNCTION -- 2.1 The derivative of a function -- 2.2 The derivative as the slope of the tangent line to a curve -- 2.3 The four step rule -- 2.4 The limit of a ratio when both numerator and denominator tend to zero -- III: RULES AND FORMULAS FOR DIFFERENTIATION -- 3.1 Rules for differentiation -- 3.2 Formulas for differentiation
|
505 |
8 |
|
|a 3.3 Proofs of formulas for differentiation3.4 The derivative of the square root of a function -- 3.5 The derivatives of functions which are defined implicitly -- IV: DIFFERENTIALS, DIFFERENTIAL EQUATIONS AND ANTI-DIFFERENTIALS -- 4.1 Definition and geometrical interpretation of a differential -- 4.2 Relations between dy and Î#x94;y -- 4.3 Functions with vanishing derivatives -- 4.4 The fundamental theorem of the differential calculus -- 4.5 Two theorems on differentials -- 4.6 Some further applications of differentials -- 4.7 Differential relations
|
505 |
8 |
|
|a 4.8 Rules for determining differentials4.9 Anti-differentials -- 4.10 Formulas for anti-differentials -- V: THE DEFINITE INTEGRAL -- 5.1 The definite integral -- 5.2 Continuous function -- 5.3 Definition of continuity -- 5.4 Maximum and minimum values of a function -- 5.5 Assumptions regarding the behaviour of continuous functions -- 5.6 Sequences of numbers -- 5.7 Notations for sums -- 5.8 Areas and volumes -- 5.9 A problem on area -- 5.10 The definition of the definite integral -- 5.11 The fundamental theorem of the integral calculus
|
505 |
8 |
|
|a 5.12 The solution of the area problem of  5.9 5.13 The symbol for the definite integral -- 5.14 The double use of symbols -- 5.15 The existence of the definite integral -- 5.16 The definite integral of continuous functions -- 5.17 Abbreviated methods -- 5.18 Area as a function of the variable x and the double meaning of the symbol dA -- 5.19 The existence of the definite integral of a continuous function -- 5.20 The indefinite integral -- 5.21 The fundamental theorem of the integral calculus -- VI: THE TRANSCENDENTAL FUNCTIONS -- 6.1 Transcendental functions
|
520 |
|
|
|a Since first publication in 1954, this text has been widely used in North American universities in introductory courses in science and engineering. It is a streamlined text, in which essential ideas are not buried in endless detail.
|
590 |
|
|
|a JSTOR
|b Books at JSTOR Demand Driven Acquisitions (DDA)
|
590 |
|
|
|a JSTOR
|b Books at JSTOR All Purchased
|
590 |
|
|
|a JSTOR
|b Books at JSTOR Evidence Based Acquisitions
|
650 |
|
0 |
|a Calculus.
|
650 |
|
6 |
|a Calcul infinitésimal.
|
650 |
|
7 |
|a calculus.
|2 aat
|
650 |
|
7 |
|a MATHEMATICS
|x Calculus.
|2 bisacsh
|
650 |
|
7 |
|a Calculus
|2 fast
|
776 |
0 |
8 |
|i Print version:
|a Jeffery, Ralph, L.
|t Calculus (Third Edition).
|d Toronto : University of Toronto Press, ©1960
|z 9781487592059
|
830 |
|
0 |
|a Heritage.
|
856 |
4 |
0 |
|u https://jstor.uam.elogim.com/stable/10.3138/j.ctt1vxm93w
|z Texto completo
|
938 |
|
|
|a Project MUSE
|b MUSE
|n musev2_107886
|
938 |
|
|
|a Canadian Electronic Library
|b CELB
|n 454148
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL5092310
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 1613308
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 14875802
|
938 |
|
|
|a Internet Archive
|b INAR
|n calculus0000jeff
|
994 |
|
|
|a 92
|b IZTAP
|