Cargando…

Asymptotic differential algebra and model theory of transseries /

Asymptotic differential algebra seeks to understand the solutions of differential equations and their asymptotics from an algebraic point of view. The differential field of transseries plays a central role in the subject. Besides powers of the variable, these series may contain exponential and logar...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Aschenbrenner, Matthias, 1972-
Otros Autores: Van den Dries, Lou, Hoeven, J. van der (Joris)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton : Princeton University Press, 2017.
Colección:Annals of mathematics studies ; no. 195.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 JSTOR_ocn986538411
003 OCoLC
005 20231005004200.0
006 m o d
007 cr cnu---unuuu
008 170510s2017 nju ob 001 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d JSTOR  |d IDEBK  |d YDX  |d EBLCP  |d MERUC  |d OCLCQ  |d LGG  |d DEGRU  |d DEBBG  |d OCLCF  |d OCLCO  |d TXI  |d UAB  |d NRC  |d STBDS  |d OCLCQ  |d WYU  |d OCLCQ  |d UKAHL  |d OCLCQ  |d UX1  |d IEEEE  |d OCLCO  |d OCLCQ  |d OCLCO  |d YWS  |d OCLCQ  |d SFB  |d OCLCQ  |d OCLCO 
019 |a 984643717  |a 992529801  |a 1175644013 
020 |a 9781400885411  |q (electronic bk.) 
020 |a 1400885418  |q (electronic bk.) 
020 |z 9780691175423 
020 |z 069117542X 
020 |z 9780691175430 
020 |z 0691175438 
024 7 |a 10.1515/9781400885411  |2 doi 
029 1 |a AU@  |b 000060745788 
029 1 |a AU@  |b 000067041914 
029 1 |a AU@  |b 000069876134 
035 |a (OCoLC)986538411  |z (OCoLC)984643717  |z (OCoLC)992529801  |z (OCoLC)1175644013 
037 |a 22573/ctt1hsw1jw  |b JSTOR 
037 |a 9452657  |b IEEE 
050 4 |a QA295  |b .A87 2017eb 
072 7 |a MAT  |x 002040  |2 bisacsh 
072 7 |a MAT002010  |2 bisacsh 
082 0 4 |a 512/.56  |2 23 
084 |a SI 830  |2 rvk  |0 (DE-625)rvk/143195: 
049 |a UAMI 
100 1 |a Aschenbrenner, Matthias,  |d 1972- 
245 1 0 |a Asymptotic differential algebra and model theory of transseries /  |c Matthias Aschenbrenner, Lou van den Dries, Joris van der Hoeven. 
264 1 |a Princeton :  |b Princeton University Press,  |c 2017. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
347 |b PDF 
490 1 |a Annals of mathematics studies ;  |v number 195 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record. 
505 0 |a Cover; Title; Copyright; Contents; Preface; Conventions and Notations; Leitfaden; Dramatis Personæ; Introduction and Overview; A Differential Field with No Escape; Strategy and Main Results; Organization; The Next Volume; Future Challenges; A Historical Note on Transseries; 1 Some Commutative Algebra; 1.1 The Zariski Topology and Noetherianity; 1.2 Rings and Modules of Finite Length; 1.3 Integral Extensions and Integrally Closed Domains; 1.4 Local Rings; 1.5 Krull's Principal Ideal Theorem; 1.6 Regular Local Rings; 1.7 Modules and Derivations; 1.8 Differentials. 
505 8 |a 1.9 Derivations on Field Extensions2 Valued Abelian Groups; 2.1 Ordered Sets; 2.2 Valued Abelian Groups; 2.3 Valued Vector Spaces; 2.4 Ordered Abelian Groups; 3 Valued Fields; 3.1 Valuations on Fields; 3.2 Pseudoconvergence in Valued Fields; 3.3 Henselian Valued Fields; 3.4 Decomposing Valuations; 3.5 Valued Ordered Fields; 3.6 Some Model Theory of Valued Fields; 3.7 The Newton Tree of a Polynomial over a Valued Field; 4 Differential Polynomials; 4.1 Differential Fields and Differential Polynomials; 4.2 Decompositions of Differential Polynomials; 4.3 Operations on Differential Polynomials. 
505 8 |a 4.4 Valued Differential Fields and Continuity4.5 The Gaussian Valuation; 4.6 Differential Rings; 4.7 Differentially Closed Fields; 5 Linear Differential Polynomials; 5.1 Linear Differential Operators; 5.2 Second-Order Linear Differential Operators; 5.3 Diagonalization of Matrices; 5.4 Systems of Linear Differential Equations; 5.5 Differential Modules; 5.6 Linear Differential Operators in the Presence of a Valuation; 5.7 Compositional Conjugation; 5.8 The Riccati Transform; 5.9 Johnson's Theorem; 6 Valued Differential Fields; 6.1 Asymptotic Behavior of vP; 6.2 Algebraic Extensions. 
505 8 |a 6.3 Residue Extensions6.4 The Valuation Induced on the Value Group; 6.5 Asymptotic Couples; 6.6 Dominant Part; 6.7 The Equalizer Theorem; 6.8 Evaluation at Pseudocauchy Sequences; 6.9 Constructing Canonical Immediate Extensions; 7 Differential-Henselian Fields; 7.1 Preliminaries on Differential-Henselianity; 7.2 Maximality and Differential-Henselianity; 7.3 Differential-Hensel Configurations; 7.4 Maximal Immediate Extensions in the Monotone Case; 7.5 The Case of Few Constants; 7.6 Differential-Henselianity in Several Variables; 8 Differential-Henselian Fields with Many Constants. 
505 8 |a 8.1 Angular Components8.2 Equivalence over Substructures; 8.3 Relative Quantifier Elimination; 8.4 A Model Companion; 9 Asymptotic Fields and Asymptotic Couples; 9.1 Asymptotic Fields and Their Asymptotic Couples; 9.2 H-Asymptotic Couples; 9.3 Application to Differential Polynomials; 9.4 Basic Facts about Asymptotic Fields; 9.5 Algebraic Extensions of Asymptotic Fields; 9.6 Immediate Extensions of Asymptotic Fields; 9.7 Differential Polynomials of Order One; 9.8 Extending H-Asymptotic Couples; 9.9 Closed H-Asymptotic Couples; 10 H-Fields; 10.1 Pre-Differential-Valued Fields. 
520 |a Asymptotic differential algebra seeks to understand the solutions of differential equations and their asymptotics from an algebraic point of view. The differential field of transseries plays a central role in the subject. Besides powers of the variable, these series may contain exponential and logarithmic terms. Over the last thirty years, transseries emerged variously as super-exact asymptotic expansions of return maps of analytic vector fields, in connection with Tarski's problem on the field of reals with exponentiation, and in mathematical physics. Their formal nature also makes them suitable for machine computations in computer algebra systems. This self-contained book validates the intuition that the differential field of transseries is a universal domain for asymptotic differential algebra. It does so by establishing in the realm of transseries a complete elimination theory for systems of algebraic differential equations with asymptotic side conditions. Beginning with background chapters on valuations and differential algebra, the book goes on to develop the basic theory of valued differential fields, including a notion of differential-henselianity. Next, H-fields are singled out among ordered valued differential fields to provide an algebraic setting for the common properties of Hardy fields and the differential field of transseries. The study of their extensions culminates in an analogue of the algebraic closure of a field: the Newton-Liouville closure of an H-field. This paves the way to a quantifier elimination with interesting consequences. 
546 |a In English. 
590 |a JSTOR  |b Books at JSTOR Demand Driven Acquisitions (DDA) 
590 |a JSTOR  |b Books at JSTOR All Purchased 
590 |a JSTOR  |b Books at JSTOR Evidence Based Acquisitions 
650 0 |a Series, Arithmetic. 
650 0 |a Divergent series. 
650 0 |a Asymptotic expansions. 
650 0 |a Differential algebra. 
650 6 |a Séries arithmétiques. 
650 6 |a Séries divergentes. 
650 6 |a Développements asymptotiques. 
650 6 |a Algèbre différentielle. 
650 7 |a arithmetic progressions.  |2 aat 
650 7 |a MATHEMATICS  |x Algebra  |x Intermediate.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Algebra  |x Abstract.  |2 bisacsh 
650 7 |a Asymptotic expansions  |2 fast 
650 7 |a Differential algebra  |2 fast 
650 7 |a Divergent series  |2 fast 
650 7 |a Series, Arithmetic  |2 fast 
653 |a Equalizer Theorem. 
653 |a H-asymptotic couple. 
653 |a H-asymptotic field. 
653 |a H-field. 
653 |a Hahn Embedding Theorem. 
653 |a Hahn space. 
653 |a Johnson's Theorem. 
653 |a Krull's Principal Ideal Theorem. 
653 |a Kähler differentials. 
653 |a Liouville closed H-field. 
653 |a Liouville closure. 
653 |a Newton degree. 
653 |a Newton diagram. 
653 |a Newton multiplicity. 
653 |a Newton tree. 
653 |a Newton weight. 
653 |a Newton-Liouville closure. 
653 |a Riccati transform. 
653 |a Scanlon's extension. 
653 |a Zariski topology. 
653 |a algebraic differential equation. 
653 |a algebraic extension. 
653 |a angular component map. 
653 |a asymptotic couple. 
653 |a asymptotic differential algebra. 
653 |a asymptotic field. 
653 |a asymptotic relation. 
653 |a asymptotics. 
653 |a closed H-asymptotic couple. 
653 |a closure properties. 
653 |a coarsening. 
653 |a commutative algebra. 
653 |a commutative ring. 
653 |a compositional conjugation. 
653 |a constant. 
653 |a continuity. 
653 |a d-henselian. 
653 |a d-henselianity. 
653 |a decomposition. 
653 |a derivation. 
653 |a differential field extension. 
653 |a differential field. 
653 |a differential module. 
653 |a differential polynomial. 
653 |a differential-hensel. 
653 |a differential-henselian field. 
653 |a differential-henselianity. 
653 |a differential-valued extension. 
653 |a differentially closed field. 
653 |a dominant part. 
653 |a equivalence. 
653 |a eventual quantities. 
653 |a exponential integral. 
653 |a extension. 
653 |a filtered module. 
653 |a gaussian extension. 
653 |a grid-based transseries. 
653 |a henselian valued field. 
653 |a homogeneous differential polynomial. 
653 |a immediate extension. 
653 |a integral. 
653 |a integrally closed domain. 
653 |a linear differential equation. 
653 |a linear differential operator. 
653 |a linear differential polynomial. 
653 |a mathematics. 
653 |a maximal immediate extension. 
653 |a model companion. 
653 |a monotonicity. 
653 |a noetherian ring. 
653 |a ordered abelian group. 
653 |a ordered differential field. 
653 |a ordered set. 
653 |a pre-differential-valued field. 
653 |a pseudocauchy sequence. 
653 |a pseudoconvergence. 
653 |a quantifier elimination. 
653 |a rational asymptotic integration. 
653 |a regular local ring. 
653 |a residue field. 
653 |a simple differential ring. 
653 |a small derivation. 
653 |a special cut. 
653 |a specialization. 
653 |a substructure. 
653 |a transseries. 
653 |a triangular automorphism. 
653 |a triangular derivation. 
653 |a valuation topology. 
653 |a valuation. 
653 |a value group. 
653 |a valued abelian group. 
653 |a valued differential field. 
653 |a valued field. 
653 |a valued vector space. 
700 1 |a Van den Dries, Lou. 
700 1 |a Hoeven, J. van der  |q (Joris) 
776 0 8 |i Print version:  |a Aschenbrenner, Matthias, 1972-  |t Asymptotic differential algebra and model theory of transseries  |z 9780691175423  |w (DLC) 2017005899  |w (OCoLC)962354550 
830 0 |a Annals of mathematics studies ;  |v no. 195. 
856 4 0 |u https://jstor.uam.elogim.com/stable/10.2307/j.ctt1ht4v2s  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH32776556 
938 |a De Gruyter  |b DEGR  |n 9781400885411 
938 |a EBL - Ebook Library  |b EBLB  |n EBL4871137 
938 |a EBSCOhost  |b EBSC  |n 1460147 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis37911855 
938 |a Oxford University Press USA  |b OUPR  |n EDZ0001756494 
938 |a YBP Library Services  |b YANK  |n 13277878 
994 |a 92  |b IZTAP