Cargando…

The mathematics of shock reflection-diffraction and von Neumann's conjectures /

This book offers a survey of recent developments in the analysis of shock reflection-diffraction, a detailed presentation of original mathematical proofs of von Neumann's conjectures for potential flow, and a collection of related results and new techniques in the analysis of partial differenti...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Chen, Gui-Qiang, 1963- (Autor), Feldman, Mikhail, 1960- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton : Princeton University Press, 2018.
Colección:Annals of mathematics studies ; no. 197.
Temas:
C0.
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ii 4500
001 JSTOR_ocn984651973
003 OCoLC
005 20231005004200.0
006 m o d
007 cr |||||||||||
008 170405s2018 nyu ob 001 0 eng d
010 |a  2017008667 
040 |a DEGRU  |b eng  |e rda  |e pn  |c DEGRU  |d DEBBG  |d OCLCQ  |d JSTOR  |d TXM  |d OCLCO  |d EBLCP  |d YDX  |d EZ9  |d UAB  |d OCLCF  |d OCLCQ  |d DEGRU  |d INT  |d WYU  |d OCLCQ  |d UX1  |d UIU  |d IEEEE  |d AAA  |d OCLCO  |d OCLCQ  |d YWS  |d OCLCO 
019 |a 1005930868  |a 1011104535  |a 1019657762  |a 1175629261 
020 |a 9781400885435  |q (electronic bk.) 
020 |a 1400885434  |q (electronic bk.) 
020 |a 9780691160542  |q (hardcover : alk. paper) 
020 |a 0691160546  |q (hardcover : alk. paper) 
020 |a 9780691160559  |q (pbk. : alk. paper) 
020 |a 0691160554  |q (pbk. : alk. paper) 
029 1 |a AU@  |b 000062580087 
029 1 |a AU@  |b 000067041221 
035 |a (OCoLC)984651973  |z (OCoLC)1005930868  |z (OCoLC)1011104535  |z (OCoLC)1019657762  |z (OCoLC)1175629261 
037 |a 22573/ctt1jjqptf  |b JSTOR 
037 |a 9452661  |b IEEE 
050 4 |a QC168.85.S45 
072 7 |a MAT000000  |2 bisacsh 
082 0 4 |a 531/.1133  |2 23 
049 |a UAMI 
100 1 |a Chen, Gui-Qiang,  |d 1963-  |e author. 
245 1 4 |a The mathematics of shock reflection-diffraction and von Neumann's conjectures /  |c Gui-Qiang G. Chen, Mikhail Feldman. 
264 1 |a Princeton :  |b Princeton University Press,  |c 2018. 
264 4 |c ©2018 
300 |a 1 online resource (xiv, 814 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Annals of mathematics studies ;  |v number 197 
520 |a This book offers a survey of recent developments in the analysis of shock reflection-diffraction, a detailed presentation of original mathematical proofs of von Neumann's conjectures for potential flow, and a collection of related results and new techniques in the analysis of partial differential equations (PDEs), as well as a set of fundamental open problems for further development. Shock waves are fundamental in nature. They are governed by the Euler equations or their variants, generally in the form of nonlinear conservation laws--PDEs of divergence form. When a shock hits an obstacle, shock reflection-diffraction configurations take shape. To understand the fundamental issues involved, such as the structure and transition criteria of different configuration patterns, it is essential to establish the global existence, regularity, and structural stability of shock reflection-diffraction solutions. This involves dealing with several core difficulties in the analysis of nonlinear PDEs--mixed type, free boundaries, and corner singularities--that also arise in fundamental problems in diverse areas such as continuum mechanics, differential geometry, mathematical physics, and materials science. Presenting recently developed approaches and techniques, which will be useful for solving problems with similar difficulties, this book opens up new research opportunities. 
546 |a In English. 
588 0 |a Online resource; title from PDF title page (publisher's Web site, viewed Feb. 24, 2017). 
504 |a Includes bibliographical references and index. 
505 0 |a I. Shock reflection-diffraction, nonlinear conservation laws of mixed type, and von Neumann's conjectures -- Shock reflection-diffraction, nonlinear partial differential equations of mixed type, and free boundary problems -- Mathematical formulations and main theorems -- Main steps and related analysis in the proofs of the main theorems -- II. Elliptic theory and related analysis for shock reflection-diffraction -- Relevant results for nonlinear elliptic equations of second order -- Basic properties of the self-similar potential flow equation -- III. Proofs of the main theorems for the sonic conjecture and related analysis -- Uniform states and normal reflection -- Local theory and von Neumann's conjectures -- Admissible solutions and features of problem 2.6.1 -- Uniform estimates for admissible solutions -- Regularity of admissible solutions away from the sonic arc -- Regularity of admissible solutions near the sonic arc -- Iteration set and solvability of the iteration problem -- Iteration map, fixed points, and existence of admissible solutions up to the sonic angle -- Optimal regularity of solutions near the sonic circle -- IV. Subsonic regular reflection-diffraction and global existence of solutions up to the detachment angle -- Regularity of admissible solutions near the sonic arc and the reflection point -- Existence of global regular reflection-diffraction solutions up to the detachment angle -- V. Connections and open problems -- The full Euler equation and the potential flow equation -- Shock reflection-diffraction and new mathematical challenges. 
590 |a JSTOR  |b Books at JSTOR Evidence Based Acquisitions 
590 |a JSTOR  |b Books at JSTOR All Purchased 
590 |a JSTOR  |b Books at JSTOR Demand Driven Acquisitions (DDA) 
650 0 |a Shock waves  |x Diffraction. 
650 0 |a Shock waves  |x Mathematics. 
650 0 |a Von Neumann algebras. 
650 6 |a Ondes de choc  |x Mathématiques. 
650 6 |a Algèbres de Von Neumann. 
650 7 |a MATHEMATICS  |x General.  |2 bisacsh 
650 7 |a Shock waves  |x Diffraction  |2 fast 
650 7 |a Von Neumann algebras  |2 fast 
653 |a A priori estimate. 
653 |a Accuracy and precision. 
653 |a Algorithm. 
653 |a Andrew Majda. 
653 |a Attractor. 
653 |a Banach space. 
653 |a Bernhard Riemann. 
653 |a Big O notation. 
653 |a Boundary value problem. 
653 |a Bounded set (topological vector space). 
653 |a C0. 
653 |a Calculation. 
653 |a Cauchy problem. 
653 |a Coefficient. 
653 |a Computation. 
653 |a Computational fluid dynamics. 
653 |a Conjecture. 
653 |a Conservation law. 
653 |a Continuum mechanics. 
653 |a Convex function. 
653 |a Degeneracy (mathematics). 
653 |a Demetrios Christodoulou. 
653 |a Derivative. 
653 |a Diffraction. 
653 |a Dimension. 
653 |a Directional derivative. 
653 |a Dirichlet boundary condition. 
653 |a Dirichlet problem. 
653 |a Dissipation. 
653 |a Ellipse. 
653 |a Elliptic curve. 
653 |a Elliptic partial differential equation. 
653 |a Embedding problem. 
653 |a Equation solving. 
653 |a Equation. 
653 |a Estimation. 
653 |a Euler equations (fluid dynamics). 
653 |a Existential quantification. 
653 |a Fixed point (mathematics). 
653 |a Flow network. 
653 |a Fluid dynamics. 
653 |a Fluid mechanics. 
653 |a Free boundary problem. 
653 |a Function (mathematics). 
653 |a Function space. 
653 |a Fundamental class. 
653 |a Fundamental solution. 
653 |a Fundamental theorem. 
653 |a Hyperbolic partial differential equation. 
653 |a Initial value problem. 
653 |a Iteration. 
653 |a Laplace's equation. 
653 |a Linear equation. 
653 |a Linear programming. 
653 |a Linear space (geometry). 
653 |a Mach reflection. 
653 |a Mathematical analysis. 
653 |a Mathematical optimization. 
653 |a Mathematical physics. 
653 |a Mathematical problem. 
653 |a Mathematical proof. 
653 |a Mathematical theory. 
653 |a Mathematician. 
653 |a Mathematics. 
653 |a Melting. 
653 |a Monotonic function. 
653 |a Neumann boundary condition. 
653 |a Nonlinear system. 
653 |a Numerical analysis. 
653 |a Parameter space. 
653 |a Parameter. 
653 |a Partial derivative. 
653 |a Partial differential equation. 
653 |a Phase boundary. 
653 |a Phase transition. 
653 |a Potential flow. 
653 |a Pressure gradient. 
653 |a Quadratic function. 
653 |a Regularity theorem. 
653 |a Riemann problem. 
653 |a Scientific notation. 
653 |a Self-similarity. 
653 |a Special case. 
653 |a Specular reflection. 
653 |a Stefan problem. 
653 |a Structural stability. 
653 |a Subspace topology. 
653 |a Symmetrization. 
653 |a Theorem. 
653 |a Theory. 
653 |a Truncation error (numerical integration). 
653 |a Two-dimensional space. 
653 |a Unification (computer science). 
653 |a Variable (mathematics). 
653 |a Velocity potential. 
653 |a Vortex sheet. 
653 |a Vorticity. 
653 |a Wave equation. 
653 |a Weak convergence (Hilbert space). 
653 |a Weak solution. 
700 1 |a Feldman, Mikhail,  |d 1960-  |e author. 
776 0 8 |i Print version:  |n Druck-Ausgabe  |z 9780691160559 
830 0 |a Annals of mathematics studies ;  |v no. 197. 
856 4 0 |u https://jstor.uam.elogim.com/stable/10.2307/j.ctt1jktq4b  |z Texto completo 
938 |a De Gruyter  |b DEGR  |n 9781400885435 
938 |a EBL - Ebook Library  |b EBLB  |n EBL5214933 
938 |a YBP Library Services  |b YANK  |n 13277880 
994 |a 92  |b IZTAP