Cargando…

Ecological forecasting /

Ecologists are being asked to respond to unprecedented environmental challenges. How can they provide the best available scientific information about what will happen in the future? Ecological Forecasting is the first book to bring together the concepts and tools needed to make ecology a more predic...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Dietze, Michael Christopher, 1976- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton, New Jersey : Princeton University Press, [2017]
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 JSTOR_ocn983474406
003 OCoLC
005 20231005004200.0
006 m o d
007 cr |n|||||||||
008 170421t20172017njua ob 001 0 eng d
010 |a  2016044327 
040 |a IDEBK  |b eng  |e rda  |e pn  |c IDEBK  |d N$T  |d OCLCO  |d YDX  |d EBLCP  |d STF  |d VA@  |d CNCGM  |d OCLCQ  |d DEGRU  |d CUS  |d OCLCF  |d OCLCQ  |d WYU  |d OCLCQ  |d MERUC  |d JSTOR  |d UKAHL  |d SFB  |d OCLCQ  |d UX1  |d OCLCO  |d ORE  |d OCL  |d OCLCQ 
019 |a 984644036  |a 1125681199  |a 1136477254  |a 1175630641 
020 |a 1400885450  |q (electronic bk.) 
020 |a 9781400885459  |q (electronic bk.) 
020 |z 0691160570 
020 |z 9780691160573 
024 7 |a 10.1515/9781400885459  |2 doi 
029 1 |a AU@  |b 000060745818 
029 1 |a GBVCP  |b 888171668 
029 1 |a AU@  |b 000067040534 
035 |a (OCoLC)983474406  |z (OCoLC)984644036  |z (OCoLC)1125681199  |z (OCoLC)1136477254  |z (OCoLC)1175630641 
037 |a 1005452  |b MIL 
037 |a 22573/ctvc64ck3  |b JSTOR 
050 4 |a QH541.15.E265  |b D54 2017eb 
072 7 |a NAT  |x 010000  |2 bisacsh 
072 7 |a NAT  |x 045040  |2 bisacsh 
072 7 |a SCI  |x 026000  |2 bisacsh 
072 7 |a SCI  |x 020000  |2 bisacsh 
072 7 |a SCI  |x 008000  |2 bisacsh 
082 0 4 |a 577.01/12  |2 23 
049 |a UAMI 
100 1 |a Dietze, Michael Christopher,  |d 1976-  |e author. 
245 1 0 |a Ecological forecasting /  |c Michael C. Dietze. 
264 1 |a Princeton, New Jersey :  |b Princeton University Press,  |c [2017] 
264 4 |c ©2017 
300 |a 1 online resource (x, 270 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references (pages 245-259) and index. 
505 0 |a Introduction -- From models to forecasts -- Data, large and small -- Scientific workflows and the informatics of model-data fusion -- Introduction to Bayes -- Characterizing uncertainty -- Case study : Biodiversity, populations, and endangered species -- Latent variables and state-space models -- Fusing data sources -- Case study : Natural resources -- Propagating, analyzing, and reducing uncertainty -- Case study : Carbon cycle -- Data assimilation 1 : analytical methods -- Data assimilation 2 : Monte Carlo methods -- Epidemiology -- Assessing model performance -- Projection and decision support -- Final thoughts. 
520 |a Ecologists are being asked to respond to unprecedented environmental challenges. How can they provide the best available scientific information about what will happen in the future? Ecological Forecasting is the first book to bring together the concepts and tools needed to make ecology a more predictive science. Ecological Forecasting presents a new way of doing ecology. A closer connection between data and models can help us to project our current understanding of ecological processes into new places and times. This accessible and comprehensive book covers a wealth of topics, including Bayesian calibration and the complexities of real-world data; uncertainty quantification, partitioning, propagation, and analysis; feedbacks from models to measurements; state-space models and data fusion; iterative forecasting and the forecast cycle; and decision support. Features case studies that highlight the advances and opportunities in forecasting across a range of ecological subdisciplines, such as epidemiology, fisheries, endangered species, biodiversity, and the carbon cycle Presents a probabilistic approach to prediction and iteratively updating forecasts based on new dataDescribes statistical and informatics tools for bringing models and data together, with emphasis on:Quantifying and partitioning uncertaintiesDealing with the complexities of real-world dataFeedbacks to identifying data needs, improving models, and decision supportNumerous hands-on activities in R available online. 
588 |a Description based on print version record; title from resource title page (viewed August 8, 2022). 
590 |a JSTOR  |b Books at JSTOR All Purchased 
590 |a JSTOR  |b Books at JSTOR Demand Driven Acquisitions (DDA) 
590 |a JSTOR  |b Books at JSTOR Evidence Based Acquisitions 
650 0 |a Ecosystem health  |x Forecasting. 
650 0 |a Ecological forecasting. 
650 6 |a Écosystèmes  |x Santé  |x Prévision. 
650 7 |a NATURE  |x Ecology.  |2 bisacsh 
650 7 |a NATURE  |x Ecosystems & Habitats  |x Wilderness.  |2 bisacsh 
650 7 |a SCIENCE  |x Environmental Science.  |2 bisacsh 
650 7 |a SCIENCE  |x Life Sciences  |x Ecology.  |2 bisacsh 
650 7 |a SCIENCE  |x Life Sciences  |x Biology.  |2 bisacsh 
650 7 |a Ecological forecasting.  |2 fast  |0 (OCoLC)fst02023659 
776 0 8 |i Print version:  |a Dietze, Michael Christopher, 1976-  |t Ecological forecasting.  |d Princeton : Princeton University Press, [2017]  |z 9780691160573  |w (DLC) 2016044327  |w (OCoLC)962350796 
856 4 0 |u https://jstor.uam.elogim.com/stable/10.2307/j.ctvc7796h  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH32684753 
938 |a De Gruyter  |b DEGR  |n 9781400885459 
938 |a EBL - Ebook Library  |b EBLB  |n EBL4866481 
938 |a EBSCOhost  |b EBSC  |n 1460149 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis37857833 
938 |a YBP Library Services  |b YANK  |n 13277882 
994 |a 92  |b IZTAP