Cargando…

Holder continuous Euler flows in three dimensions with compact support in time /

Motivated by the theory of turbulence in fluids, the physicist and chemist Lars Onsager conjectured in 1949 that weak solutions to the incompressible Euler equations might fail to conserve energy if their spatial regularity was below 1/3-Hölder. In this book, Philip Isett uses the method of convex...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Isett, Philip
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton University Press, 2017.
Colección:Annals of mathematics studies ; no. 196.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ma 4500
001 JSTOR_ocn968415598
003 OCoLC
005 20231005004200.0
006 m o d
007 cr |n|||||||||
008 170113s2017 xx o 000 0 eng d
040 |a IDEBK  |b eng  |e pn  |c IDEBK  |d JSTOR  |d IDEBK  |d YDX  |d N$T  |d OCLCQ  |d EBLCP  |d OCLCQ  |d DEBBG  |d LGG  |d DEGRU  |d UAB  |d STBDS  |d OCLCQ  |d DEHBZ  |d NRC  |d LEAUB  |d UKAHL  |d OCLCQ  |d CUS  |d IEEEE  |d OCLCO  |d OCLCQ  |d YWS  |d OCLCQ 
019 |a 979595921  |a 992933348 
020 |a 1400885426  |q (electronic bk.) 
020 |a 9781400885428  |q (electronic bk.) 
024 7 |a 10.1515/9781400885428  |2 doi 
029 1 |a GBVCP  |b 882892584 
035 |a (OCoLC)968415598  |z (OCoLC)979595921  |z (OCoLC)992933348 
037 |a 985558  |b MIL 
037 |a 22573/ctt1h180j7  |b JSTOR 
037 |a 9452463  |b IEEE 
050 4 |a QA911  |b .I84 2017eb 
072 7 |a TEC  |x 014000  |2 bisacsh 
082 0 4 |a 532.1  |2 23 
049 |a UAMI 
100 1 |a Isett, Philip. 
245 1 0 |a Holder continuous Euler flows in three dimensions with compact support in time /  |c Philip Isett. 
260 |b Princeton University Press,  |c 2017. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Annals of Mathematics Studies ;  |v number 196 
520 |a Motivated by the theory of turbulence in fluids, the physicist and chemist Lars Onsager conjectured in 1949 that weak solutions to the incompressible Euler equations might fail to conserve energy if their spatial regularity was below 1/3-Hölder. In this book, Philip Isett uses the method of convex integration to achieve the best-known results regarding nonuniqueness of solutions and Onsager's conjecture. Focusing on the intuition behind the method, the ideas introduced now play a pivotal role in the ongoing study of weak solutions to fluid dynamics equations. The construction itself--an intricate algorithm with hidden symmetries--mixes together transport equations, algebra, the method of nonstationary phase, underdetermined partial differential equations (PDEs), and specially designed high-frequency waves built using nonlinear phase functions. The powerful "Main Lemma"--Used here to construct nonzero solutions with compact support in time and to prove nonuniqueness of solutions to the initial value problem--has been extended to a broad range of applications that are surveyed in the appendix. Appropriate for students and researchers studying nonlinear PDEs, this book aims to be as robust as possible and pinpoints the main difficulties that presently stand in the way of a full solution to Onsager's conjecture. 
588 0 |a Print version record. 
505 0 0 |t Frontmatter --  |t Contents --  |t Preface --  |t Part I. Introduction --  |t Part II. General Considerations of the Scheme --  |t Part III. Basic Construction of the Correction --  |t Part IV. Obtaining Solutions from the Construction --  |t Part V. Construction of Regular Weak Solutions: Preliminaries --  |t Part VI Construction of Regular Weak Solutions: Estimating the Correction --  |t Part VII. Construction of Regular Weak Solutions: Estimating the New Stress --  |t Acknowledgments --  |t Appendices --  |t References --  |t Index 
546 |a In English. 
590 |a JSTOR  |b Books at JSTOR Demand Driven Acquisitions (DDA) 
590 |a JSTOR  |b Books at JSTOR Evidence Based Acquisitions 
590 |a JSTOR  |b Books at JSTOR All Purchased 
650 0 |a Fluid dynamics  |x Mathematics. 
650 6 |a Dynamique des fluides  |x Mathématiques. 
650 7 |a TECHNOLOGY & ENGINEERING  |x Hydraulics.  |2 bisacsh 
650 7 |a Fluid dynamics  |x Mathematics.  |2 fast  |0 (OCoLC)fst00927983 
653 |a Beltrami flows. 
653 |a Einstein summation convention. 
653 |a Euler equations. 
653 |a Euler flow. 
653 |a Euler-Reynolds equations. 
653 |a Euler-Reynolds system. 
653 |a Galilean invariance. 
653 |a Galilean transformation. 
653 |a Hlder norm. 
653 |a Hlder regularity. 
653 |a Lars Onsager. 
653 |a Main Lemma. 
653 |a Main Theorem. 
653 |a Mollification term. 
653 |a Newton's law. 
653 |a Noether's theorem. 
653 |a Onsager's conjecture. 
653 |a Reynolds stres. 
653 |a Reynolds stress. 
653 |a Stress equation. 
653 |a Stress term. 
653 |a Transport equation. 
653 |a Transport term. 
653 |a Transport-Elliptic equation. 
653 |a abstract index notation. 
653 |a algebra. 
653 |a amplitude. 
653 |a coarse scale flow. 
653 |a coarse scale velocity. 
653 |a coefficient. 
653 |a commutator estimate. 
653 |a commutator term. 
653 |a commutator. 
653 |a conservation of momentum. 
653 |a continuous solution. 
653 |a contravariant tensor. 
653 |a convergence. 
653 |a convex integration. 
653 |a correction term. 
653 |a correction. 
653 |a covariant tensor. 
653 |a dimensional analysis. 
653 |a divergence equation. 
653 |a divergence free vector field. 
653 |a divergence operator. 
653 |a energy approximation. 
653 |a energy function. 
653 |a energy increment. 
653 |a energy regularity. 
653 |a energy variation. 
653 |a energy. 
653 |a error term. 
653 |a error. 
653 |a finite time interval. 
653 |a first material derivative. 
653 |a fluid dynamics. 
653 |a frequencies. 
653 |a frequency energy levels. 
653 |a h-principle. 
653 |a integral. 
653 |a lifespan parameter. 
653 |a lower indices. 
653 |a material derivative. 
653 |a mollification. 
653 |a mollifier. 
653 |a moment vanishing condition. 
653 |a momentum. 
653 |a multi-index. 
653 |a non-negative function. 
653 |a nonzero solution. 
653 |a optimal regularity. 
653 |a oscillatory factor. 
653 |a oscillatory term. 
653 |a parameters. 
653 |a parametrix expansion. 
653 |a parametrix. 
653 |a phase direction. 
653 |a phase function. 
653 |a phase gradient. 
653 |a pressure correction. 
653 |a pressure. 
653 |a regularity. 
653 |a relative acceleration. 
653 |a relative velocity. 
653 |a scaling symmetry. 
653 |a second material derivative. 
653 |a smooth function. 
653 |a smooth stress tensor. 
653 |a smooth vector field. 
653 |a spatial derivative. 
653 |a stress. 
653 |a tensor. 
653 |a theorem. 
653 |a time cutoff function. 
653 |a time derivative. 
653 |a transport derivative. 
653 |a transport equations. 
653 |a transport estimate. 
653 |a transport. 
653 |a upper indices. 
653 |a vector amplitude. 
653 |a velocity correction. 
653 |a velocity field. 
653 |a velocity. 
653 |a weak limit. 
653 |a weak solution. 
776 0 8 |i Print version:  |n Druck-Ausgabe  |z 9781400885428 
830 0 |a Annals of mathematics studies ;  |v no. 196. 
856 4 0 |u https://jstor.uam.elogim.com/stable/10.2307/j.ctt1h1hthf  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH32254904 
938 |a De Gruyter  |b DEGR  |n 9781400885428 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL4854432 
938 |a EBSCOhost  |b EBSC  |n 1431856 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis37319926 
938 |a Oxford University Press USA  |b OUPR  |n EDZ0001756493 
938 |a YBP Library Services  |b YANK  |n 13277879 
994 |a 92  |b IZTAP