Cargando…

Regression models for categorical, count, and related variables : an applied approach /

"Social science and behavioral science students and researchers are often confronted with data that are categorical, count a phenomenon, or have been collected over time. Sociologists examining the likelihood of interracial marriage, political scientists studying voting behavior, criminologists...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Hoffmann, John P. (John Patrick), 1962- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Oakland, California : University of California Press, [2016]
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 JSTOR_ocn953576519
003 OCoLC
005 20231005004200.0
006 m o d
007 cr |||||||||||
008 160712t20162016cau ob 001 0 eng
010 |a  2016032215 
040 |a DLC  |b eng  |e rda  |e pn  |c DLC  |d N$T  |d OCLCF  |d YDX  |d EBLCP  |d CSAIL  |d IDB  |d NJR  |d UUM  |d JSTOR  |d COF  |d U3W  |d G3B  |d IGB  |d STF  |d DEGRU  |d DLC  |d OCLCO  |d JTB  |d OCLCO  |d OCLCQ 
019 |a 957616014  |a 958350436  |a 958447112 
020 |a 9780520965492  |q (epub) 
020 |a 0520965493 
020 |z 9780520289291  |q (pbk. ;  |q alk. paper) 
020 |z 0520289293  |q (pbk. ;  |q alk. paper) 
029 1 |a AU@  |b 000057938023 
029 1 |a CHNEW  |b 000886259 
029 1 |a CHVBK  |b 374449597 
035 |a (OCoLC)953576519  |z (OCoLC)957616014  |z (OCoLC)958350436  |z (OCoLC)958447112 
037 |a 22573/ctv1wqdp5  |b JSTOR 
042 |a pcc 
050 0 0 |a HA31.3 
072 7 |a MAT  |x 003000  |2 bisacsh 
072 7 |a MAT  |x 029000  |2 bisacsh 
072 7 |a SOC  |x 027000  |2 bisacsh 
082 0 0 |a 519.5/36  |2 23 
049 |a UAMI 
100 1 |a Hoffmann, John P.  |q (John Patrick),  |d 1962-  |e author. 
245 1 0 |a Regression models for categorical, count, and related variables :  |b an applied approach /  |c John P. Hoffmann. 
264 1 |a Oakland, California :  |b University of California Press,  |c [2016] 
264 4 |c ©2016 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
505 0 |a Review of linear regression models -- Categorical data and generalized linear models -- Logistic and probit regression models -- Ordered logistic and probit regression models -- Multinomial logistic and probit regression models -- Poisson and negative binomial regression models -- Event history models -- Regression models for longitudinal data -- Multilevel regression models -- Principal components and factor analysis -- Appendix A : SAS, SPSS, and R code for examples in chapters -- Appendix B : using simulations to examine assumptions of OLS regression -- Appendix C : working with missing data. 
520 |a "Social science and behavioral science students and researchers are often confronted with data that are categorical, count a phenomenon, or have been collected over time. Sociologists examining the likelihood of interracial marriage, political scientists studying voting behavior, criminologists counting the number of offenses people commit, health scientists studying the number of suicides across neighborhoods, and psychologists modeling mental health treatment success are all interested in outcomes that are not continuous. Instead, they must measure and analyze these events and phenomena in a discrete manner. This book provides an introduction and overview of several statistical models designed for these types of outcomes--all presented under the assumption that the reader has only a good working knowledge of elementary algebra and has taken introductory statistics and linear regression analysis. Numerous examples from the social sciences demonstrate the practical applications of these models. The chapters address logistic and probit models, including those designed for ordinal and nominal variables, regular and zero-inflated Poisson and negative binomial models, event history models, models for longitudinal data, multilevel models, and data reduction techniques such as principal components and factor analysis. Each chapter discusses how to utilize the models and test their assumptions with the statistical software Stata, and also includes exercise sets so readers can practice using these techniques. Appendices show how to estimate the models in SAS, SPSS, and R; provide a review of regression assumptions using simulations; and discuss missing data. A companion website includes downloadable versions of all the data sets used in the book"--Provided by publisher 
588 0 |a Print version record and CIP data provided by publisher. 
590 |a JSTOR  |b Books at JSTOR All Purchased 
590 |a JSTOR  |b Books at JSTOR Demand Driven Acquisitions (DDA) 
590 |a JSTOR  |b Books at JSTOR Evidence Based Acquisitions 
650 0 |a Regression analysis  |x Mathematical models. 
650 0 |a Regression analysis  |x Computer programs. 
650 0 |a Social sciences  |x Statistical methods. 
650 6 |a Sciences sociales  |x Méthodes statistiques. 
650 7 |a MATHEMATICS  |x Applied.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Probability & Statistics  |x General.  |2 bisacsh 
650 7 |a SOCIAL SCIENCE  |x Statistics.  |2 bisacsh 
650 7 |a Regression analysis  |x Computer programs.  |2 fast  |0 (OCoLC)fst01093273 
650 7 |a Regression analysis  |x Mathematical models.  |2 fast  |0 (OCoLC)fst01093277 
650 7 |a Social sciences  |x Statistical methods.  |2 fast  |0 (OCoLC)fst01122983 
776 0 8 |i Print version:  |a Hoffmann, John P. (John Patrick), 1962-  |t Regression models for categorical, count, and related variables.  |d Oakland, California : University of California Press, [2016]  |z 9780520289291  |w (DLC) 2016030975 
856 4 0 |u https://jstor.uam.elogim.com/stable/10.1525/j.ctv1wxrfr  |z Texto completo 
938 |a De Gruyter  |b DEGR  |n 9780520965492 
938 |a EBL - Ebook Library  |b EBLB  |n EBL4700075 
938 |a EBSCOhost  |b EBSC  |n 1293234 
938 |a YBP Library Services  |b YANK  |n 13128039 
994 |a 92  |b IZTAP