Fourier restriction for hypersurfaces in three dimensions and Newton polyhedra /
This is the first book to present a complete characterization of Stein-Tomas type Fourier restriction estimates for large classes of smooth hypersurfaces in three dimensions, including all real-analytic hypersurfaces. The range of Lebesgue spaces for which these estimates are valid is described in t...
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Princeton :
Princeton University Press,
[2016]
|
Colección: | Annals of mathematics studies ;
no. 194. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Frontmatter
- Contents
- Chapter 1. Introduction
- Chapter 2. Auxiliary Results
- Chapter 3. Reduction to Restriction Estimates near the Principal Root Jet
- Chapter 4. Restriction for Surfaces with Linear Height below 2
- Chapter 5. Improved Estimates by Means of Airy-Type Analysis
- Chapter 6. The Case When h
- Chapter 7. How to Go beyond the Case h
- Chapter 8. The Remaining Cases Where m = 2 and B = 3 or B = 4
- Chapter 9. Proofs of Propositions 1.7 and 1.17
- Bibliography
- Index.