Cargando…

Abelian varieties with complex multiplication and modular functions /

Reciprocity laws of various kinds play a central role in number theory. In the easiest case, one obtains a transparent formulation by means of roots of unity, which are special values of exponential functions. A similar theory can be developed for special values of elliptic or elliptic modular funct...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Shimura, Gorō, 1930-2019 (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton, N.J. : Princeton University Press, [1998]
Colección:Princeton mathematical series ; 46.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ii 4500
001 JSTOR_ocn948756454
003 OCoLC
005 20231005004200.0
006 m o d
007 cr cnu---unuuu
008 160505s1998 nju ob 001 0 eng d
010 |a  97008673  
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d N$T  |d YDXCP  |d JSTOR  |d OCLCF  |d UIU  |d IOG  |d EZ9  |d TXC  |d LVT  |d OCLCA  |d UKAHL  |d OCLCQ  |d UX1  |d OCLCO  |d INARC  |d OCLCQ  |d OCLCO 
019 |a 1175627108 
020 |a 9781400883943  |q (electronic bk.) 
020 |a 1400883946  |q (electronic bk.) 
020 |z 0691016569 
020 |z 9780691016566 
029 1 |a AU@  |b 000062471963 
029 1 |a GBVCP  |b 1003820816 
035 |a (OCoLC)948756454  |z (OCoLC)1175627108 
037 |a 22573/ctt1bqrs2r  |b JSTOR 
050 4 |a QA564 
072 7 |a MAT  |x 038000  |2 bisacsh 
072 7 |a MAT022000  |2 bisacsh 
082 0 4 |a 514.3  |2 23 
049 |a UAMI 
100 1 |a Shimura, Gorō,  |d 1930-2019,  |e author. 
245 1 0 |a Abelian varieties with complex multiplication and modular functions /  |c Goro Shimura. 
264 1 |a Princeton, N.J. :  |b Princeton University Press,  |c [1998] 
264 4 |c ©1998 
300 |a 1 online resource (xiv, 217 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file  |2 rda 
490 1 |a Princeton mathematical series ;  |v 46 
504 |a Includes bibliographical references and index. 
505 0 0 |t Preface to Complex Multiplication of Abelian Varieties and Its Applications to Number Theory (1961) --  |g Ch. I.  |t Preliminaries on Abelian Varieties --  |g Ch. II.  |t Abelian Varieties with Complex Multiplication --  |g Ch. III.  |t Reduction of Constant Fields --  |g Ch. IV.  |t Construction of Class Fields --  |g Ch. V.  |t The Zeta Function of an Abelian Variety with Complex Multiplication --  |g Ch. VI.  |t Families of Abelian Varieties and Modular Functions --  |g Ch. VII.  |t Theta Functions and Periods on Abelian Varieties. 
520 |a Reciprocity laws of various kinds play a central role in number theory. In the easiest case, one obtains a transparent formulation by means of roots of unity, which are special values of exponential functions. A similar theory can be developed for special values of elliptic or elliptic modular functions, and is called complex multiplication of such functions. In 1900, Hilbert proposed the generalization of these as the twelfth of his famous problems. In this book, Goro Shimura provides the most comprehensive generalizations of this type by stating several reciprocity laws in terms of abelian varieties, theta functions, and modular functions of several variables, including Siegel modular functions. 
520 8 |a This subject is closely connected with the zeta function of an abelian variety, which is also covered as a main theme in the book. The third topic explored by Shimura is the various algebraic relations among the periods of abelian integrals. 
588 0 |a Online resource; title from PDF title page (EBSCO, viewed May 5, 2016). 
590 |a JSTOR  |b Books at JSTOR All Purchased 
590 |a JSTOR  |b Books at JSTOR Evidence Based Acquisitions 
590 |a JSTOR  |b Books at JSTOR Demand Driven Acquisitions (DDA) 
650 0 |a Abelian varieties. 
650 0 |a Modular functions. 
650 6 |a Variétés abéliennes. 
650 6 |a Fonctions modulaires. 
650 7 |a MATHEMATICS  |x Topology.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Number Theory.  |2 bisacsh 
650 7 |a Abelian varieties  |2 fast 
650 7 |a Modular functions  |2 fast 
830 0 |a Princeton mathematical series ;  |v 46. 
856 4 0 |u https://jstor.uam.elogim.com/stable/10.2307/j.ctt1bpm9xq  |z Texto completo 
938 |a Internet Archive  |b INAR  |n abelianvarieties0000shim 
938 |a Askews and Holts Library Services  |b ASKH  |n AH31319098 
938 |a EBSCOhost  |b EBSC  |n 1231021 
938 |a YBP Library Services  |b YANK  |n 12976244 
994 |a 92  |b IZTAP