|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
JSTOR_ocn948756256 |
003 |
OCoLC |
005 |
20231005004200.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
160505s1980 njua ob 001 0 eng d |
040 |
|
|
|a N$T
|b eng
|e rda
|e pn
|c N$T
|d JSTOR
|d UIU
|d EZ9
|d OCLCQ
|d OCLCO
|d INARC
|d IDEBK
|d YDXCP
|d EBLCP
|d DEBBG
|d GBVCP
|d CHVBK
|d OCLCF
|d COO
|d IOG
|d DEGRU
|d CUS
|d LVT
|d OCLCQ
|d MM9
|d UX1
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 948779993
|a 979584625
|a 1034673927
|a 1175639437
|
020 |
|
|
|a 9781400883981
|q (electronic bk.)
|
020 |
|
|
|a 1400883989
|q (electronic bk.)
|
020 |
|
|
|z 0691082383
|
020 |
|
|
|z 9780691082387
|
020 |
|
|
|z 0691171106
|
024 |
7 |
|
|a 10.1515/9781400883981
|2 doi
|
029 |
1 |
|
|a AU@
|b 000062535235
|
029 |
1 |
|
|a AU@
|b 000067038872
|
029 |
1 |
|
|a CHBIS
|b 010896233
|
029 |
1 |
|
|a CHVBK
|b 48338089X
|
029 |
1 |
|
|a DEBBG
|b BV043979321
|
029 |
1 |
|
|a DEBSZ
|b 486700755
|
029 |
1 |
|
|a GBVCP
|b 1003820751
|
029 |
1 |
|
|a GBVCP
|b 860609537
|
029 |
1 |
|
|a GBVCP
|b 875860893
|
035 |
|
|
|a (OCoLC)948756256
|z (OCoLC)948779993
|z (OCoLC)979584625
|z (OCoLC)1034673927
|z (OCoLC)1175639437
|
037 |
|
|
|a 22573/ctt1bqrqvp
|b JSTOR
|
050 |
|
4 |
|a QA564
|b .M52eb
|
072 |
|
7 |
|a MAT
|x 038000
|2 bisacsh
|
072 |
|
7 |
|a MAT038000
|2 bisacsh
|
082 |
0 |
4 |
|a 514/.23
|2 22
|
084 |
|
|
|a 31.14
|2 bcl
|
084 |
|
|
|a SK 320
|2 rvk
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Milne, J. S.,
|d 1942-
|e author.
|
245 |
1 |
0 |
|a Étale cohomology /
|c J.S. Milne.
|
264 |
|
1 |
|a Princeton, N.J. :
|b Princeton University Press,
|c ©1980.
|
300 |
|
|
|a 1 online resource (xiii, 323 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|
347 |
|
|
|b PDF
|
490 |
1 |
|
|a Princeton mathematical series ;
|v 33
|
504 |
|
|
|a Includes bibliographical references (pages 313-320) and index.
|
505 |
0 |
|
|a Étale morphisms -- Sheaf theory -- Cohomology -- The Brauer group -- The cohomology of curves and surfaces -- The fundamental theorems -- Appendix A. Limits -- Appendix B. Spectral sequences -- Appendix C. Hypercohomology.
|
588 |
0 |
|
|a Print version record.
|
520 |
|
|
|a One of the most important mathematical achievements of the past several decades has been A. Grothendieck's work on algebraic geometry. In the early 1960s, he and M. Artin introduced étale cohomology in order to extend the methods of sheaf-theoretic cohomology from complex varieties to more general schemes. This work found many applications, not only in algebraic geometry, but also in several different branches of number theory and in the representation theory of finite and p-adic groups. Yet until now, the work has been available only in the original massive and difficult papers. In order to provide an accessible introduction to étale cohomology, J.S. Milne offers this more elementary account covering the essential features of the theory. The author begins with a review of the basic properties of flat and étale morphisms and of the algebraic fundamental group. The next two chapters concern the basic theory of étale sheaves and elementary étale cohomology, and are followed by an application of the cohomology to the study of the Brauer group. After a detailed analysis of the cohomology of curves and surfaces, Professor Milne proves the fundamental theorems in étale cohomology -- those of base change, purity, Poincaré duality, and the Lefschetz trace formula. He then applies these theorems to show the rationality of some very general L-series.
|
546 |
|
|
|a In English.
|
590 |
|
|
|a JSTOR
|b Books at JSTOR All Purchased
|
590 |
|
|
|a JSTOR
|b Books at JSTOR Evidence Based Acquisitions
|
590 |
|
|
|a JSTOR
|b Books at JSTOR Demand Driven Acquisitions (DDA)
|
650 |
|
0 |
|a Geometry, Algebraic.
|
650 |
|
0 |
|a Homology theory.
|
650 |
|
0 |
|a Sheaf theory.
|
650 |
|
6 |
|a Géométrie algébrique.
|
650 |
|
6 |
|a Homologie.
|
650 |
|
6 |
|a Théorie des faisceaux.
|
650 |
|
7 |
|a MATHEMATICS
|x Topology.
|2 bisacsh
|
650 |
|
7 |
|a Geometry, Algebraic
|2 fast
|
650 |
|
7 |
|a Homology theory
|2 fast
|
650 |
|
7 |
|a Sheaf theory
|2 fast
|
650 |
|
7 |
|a Etalkohomologie
|2 gnd
|
650 |
1 |
7 |
|a Cohomologie.
|2 gtt
|
650 |
1 |
7 |
|a Algebraïsche topologie.
|2 gtt
|
776 |
0 |
8 |
|i Print version:
|a Milne, J.S., 1942-
|t Étale cohomology.
|d Princeton, N.J. : Princeton University Press, ©1980
|z 0691082383
|w (DLC) 79084003
|w (OCoLC)5028959
|
830 |
|
0 |
|a Princeton mathematical series ;
|v 33.
|
856 |
4 |
0 |
|u https://jstor.uam.elogim.com/stable/10.2307/j.ctt1bpmbk1
|z Texto completo
|
938 |
|
|
|a De Gruyter
|b DEGR
|n 9781400883981
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL4510782
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 1231059
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n cis34537683
|
938 |
|
|
|a Internet Archive
|b INAR
|n etalecohomology00miln
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 12979704
|
994 |
|
|
|a 92
|b IZTAP
|