Cargando…

Étale cohomology /

One of the most important mathematical achievements of the past several decades has been A. Grothendieck's work on algebraic geometry. In the early 1960s, he and M. Artin introduced étale cohomology in order to extend the methods of sheaf-theoretic cohomology from complex varieties to more gen...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Milne, J. S., 1942- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton, N.J. : Princeton University Press, ©1980.
Colección:Princeton mathematical series ; 33.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 JSTOR_ocn948756256
003 OCoLC
005 20231005004200.0
006 m o d
007 cr cnu---unuuu
008 160505s1980 njua ob 001 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d JSTOR  |d UIU  |d EZ9  |d OCLCQ  |d OCLCO  |d INARC  |d IDEBK  |d YDXCP  |d EBLCP  |d DEBBG  |d GBVCP  |d CHVBK  |d OCLCF  |d COO  |d IOG  |d DEGRU  |d CUS  |d LVT  |d OCLCQ  |d MM9  |d UX1  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 948779993  |a 979584625  |a 1034673927  |a 1175639437 
020 |a 9781400883981  |q (electronic bk.) 
020 |a 1400883989  |q (electronic bk.) 
020 |z 0691082383 
020 |z 9780691082387 
020 |z 0691171106 
024 7 |a 10.1515/9781400883981  |2 doi 
029 1 |a AU@  |b 000062535235 
029 1 |a AU@  |b 000067038872 
029 1 |a CHBIS  |b 010896233 
029 1 |a CHVBK  |b 48338089X 
029 1 |a DEBBG  |b BV043979321 
029 1 |a DEBSZ  |b 486700755 
029 1 |a GBVCP  |b 1003820751 
029 1 |a GBVCP  |b 860609537 
029 1 |a GBVCP  |b 875860893 
035 |a (OCoLC)948756256  |z (OCoLC)948779993  |z (OCoLC)979584625  |z (OCoLC)1034673927  |z (OCoLC)1175639437 
037 |a 22573/ctt1bqrqvp  |b JSTOR 
050 4 |a QA564  |b .M52eb 
072 7 |a MAT  |x 038000  |2 bisacsh 
072 7 |a MAT038000  |2 bisacsh 
082 0 4 |a 514/.23  |2 22 
084 |a 31.14  |2 bcl 
084 |a SK 320  |2 rvk 
049 |a UAMI 
100 1 |a Milne, J. S.,  |d 1942-  |e author. 
245 1 0 |a Étale cohomology /  |c J.S. Milne. 
264 1 |a Princeton, N.J. :  |b Princeton University Press,  |c ©1980. 
300 |a 1 online resource (xiii, 323 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
347 |b PDF 
490 1 |a Princeton mathematical series ;  |v 33 
504 |a Includes bibliographical references (pages 313-320) and index. 
505 0 |a Étale morphisms -- Sheaf theory -- Cohomology -- The Brauer group -- The cohomology of curves and surfaces -- The fundamental theorems -- Appendix A. Limits -- Appendix B. Spectral sequences -- Appendix C. Hypercohomology. 
588 0 |a Print version record. 
520 |a One of the most important mathematical achievements of the past several decades has been A. Grothendieck's work on algebraic geometry. In the early 1960s, he and M. Artin introduced étale cohomology in order to extend the methods of sheaf-theoretic cohomology from complex varieties to more general schemes. This work found many applications, not only in algebraic geometry, but also in several different branches of number theory and in the representation theory of finite and p-adic groups. Yet until now, the work has been available only in the original massive and difficult papers. In order to provide an accessible introduction to étale cohomology, J.S. Milne offers this more elementary account covering the essential features of the theory. The author begins with a review of the basic properties of flat and étale morphisms and of the algebraic fundamental group. The next two chapters concern the basic theory of étale sheaves and elementary étale cohomology, and are followed by an application of the cohomology to the study of the Brauer group. After a detailed analysis of the cohomology of curves and surfaces, Professor Milne proves the fundamental theorems in étale cohomology -- those of base change, purity, Poincaré duality, and the Lefschetz trace formula. He then applies these theorems to show the rationality of some very general L-series. 
546 |a In English. 
590 |a JSTOR  |b Books at JSTOR All Purchased 
590 |a JSTOR  |b Books at JSTOR Evidence Based Acquisitions 
590 |a JSTOR  |b Books at JSTOR Demand Driven Acquisitions (DDA) 
650 0 |a Geometry, Algebraic. 
650 0 |a Homology theory. 
650 0 |a Sheaf theory. 
650 6 |a Géométrie algébrique. 
650 6 |a Homologie. 
650 6 |a Théorie des faisceaux. 
650 7 |a MATHEMATICS  |x Topology.  |2 bisacsh 
650 7 |a Geometry, Algebraic  |2 fast 
650 7 |a Homology theory  |2 fast 
650 7 |a Sheaf theory  |2 fast 
650 7 |a Etalkohomologie  |2 gnd 
650 1 7 |a Cohomologie.  |2 gtt 
650 1 7 |a Algebraïsche topologie.  |2 gtt 
776 0 8 |i Print version:  |a Milne, J.S., 1942-  |t Étale cohomology.  |d Princeton, N.J. : Princeton University Press, ©1980  |z 0691082383  |w (DLC) 79084003  |w (OCoLC)5028959 
830 0 |a Princeton mathematical series ;  |v 33. 
856 4 0 |u https://jstor.uam.elogim.com/stable/10.2307/j.ctt1bpmbk1  |z Texto completo 
938 |a De Gruyter  |b DEGR  |n 9781400883981 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL4510782 
938 |a EBSCOhost  |b EBSC  |n 1231059 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis34537683 
938 |a Internet Archive  |b INAR  |n etalecohomology00miln 
938 |a YBP Library Services  |b YANK  |n 12979704 
994 |a 92  |b IZTAP