Cargando…

Elements of mathematics : from Euclid to Gödel /

"Elements of Mathematics takes readers on a fascinating tour that begins in elementary mathematics--but, as John Stillwell shows, this subject is not as elementary or straightforward as one might think. Not all topics that are part of today's elementary mathematics were always considered a...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Stillwell, John (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton : Princeton University Press, [2016]
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 JSTOR_ocn946359807
003 OCoLC
005 20231005004200.0
006 m o d
007 cr |||||||||||
008 160411t20162016njua ob 001 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d N$T  |d IDEBK  |d YDXCP  |d EBLCP  |d CDX  |d DEBBG  |d IDB  |d UAB  |d MNW  |d NRC  |d MNW  |d OCLCQ  |d DEGRU  |d OCLCF  |d DEBSZ  |d MERUC  |d MUU  |d W2U  |d UUM  |d OCLCQ  |d AU@  |d OCLCQ  |d WYU  |d JSTOR  |d OCLCQ  |d UKBTH  |d IEEEE  |d OCLCO  |d S2H  |d OCLCO  |d OCLCQ 
066 |c (S 
019 |a 952597225  |a 982200871  |a 987921596  |a 1066464794 
020 |a 9781400880560  |q (electronic bk.) 
020 |a 1400880564  |q (electronic bk.) 
020 |z 9780691171685  |q (hardcover ;  |q alk. paper) 
020 |z 0691171688  |q (hardcover ;  |q alk. paper) 
020 |z 9780691178547  |q (paperback) 
020 |z 0691178542  |q (paperback) 
024 7 |a 10.1515/9781400880560  |2 doi 
029 1 |a AU@  |b 000059223874 
029 1 |a DEBBG  |b BV043892872 
029 1 |a DEBBG  |b BV043640059 
029 1 |a DEBSZ  |b 494304928 
029 1 |a AU@  |b 000062384669 
029 1 |a AU@  |b 000065054103 
035 |a (OCoLC)946359807  |z (OCoLC)952597225  |z (OCoLC)982200871  |z (OCoLC)987921596  |z (OCoLC)1066464794 
037 |a 4336787  |b Proquest Ebook Central 
037 |a 22573/ctvc61nv9  |b JSTOR 
037 |a 9452563  |b IEEE 
050 4 |a QA11.2 
072 7 |a MAT  |x 039000  |2 bisacsh 
072 7 |a MAT  |x 023000  |2 bisacsh 
072 7 |a MAT  |x 026000  |2 bisacsh 
072 7 |a MAT  |x 000000  |2 bisacsh 
072 7 |a MAT  |x 015000  |2 bisacsh 
072 7 |a SCI  |x 034000  |2 bisacsh 
082 0 4 |a 510.71/1  |2 23 
049 |a UAMI 
100 1 |a Stillwell, John,  |e author. 
245 1 0 |a Elements of mathematics :  |b from Euclid to Gödel /  |c John Stillwell. 
264 1 |a Princeton :  |b Princeton University Press,  |c [2016] 
264 4 |c ©2016 
300 |a 1 online resource (xiv, 422 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |b PDF 
347 |a text file 
504 |a Includes bibliographical references and index. 
588 0 |a Online resource; title from electronic title page (EBSCOhost, viewed March 14, 2018). 
505 0 |a Elementary topics -- Arithmetic -- Computation -- Algebra -- Geometry -- Calculus -- Combinatorics -- Probability -- Logic -- Some advanced mathematics. 
520 |a "Elements of Mathematics takes readers on a fascinating tour that begins in elementary mathematics--but, as John Stillwell shows, this subject is not as elementary or straightforward as one might think. Not all topics that are part of today's elementary mathematics were always considered as such, and great mathematical advances and discoveries had to occur in order for certain subjects to become'elementary.'Stillwell examines elementary mathematics from a distinctive twenty-first-century viewpoint and describes not only the beauty and scope of the discipline, but also its limits. From Gaussian integers to propositional logic, Stillwell delves into arithmetic, computation, algebra, geometry, calculus, combinatorics, probability, and logic. He discusses how each area ties into more advanced topics to build mathematics as a whole. Through a rich collection of basic principles, vivid examples, and interesting problems, Stillwell demonstrates that elementary mathematics becomes advanced with the intervention of infinity. Infinity has been observed throughout mathematical history, but the recent development of'reverse mathematics'confirms that infinity is essential for proving well-known theorems, and helps to determine the nature, contours, and borders of elementary mathematics. Elements of Mathematics gives readers, from high school students to professional mathematicians, the highlights of elementary mathematics and glimpses of the parts of math beyond its boundaries"--Publisher's description 
590 |a JSTOR  |b Books at JSTOR Demand Driven Acquisitions (DDA) 
590 |a JSTOR  |b Books at JSTOR Evidence Based Acquisitions 
590 |a JSTOR  |b Books at JSTOR All Purchased 
650 0 |a Mathematics  |x Study and teaching (Higher) 
650 7 |a MATHEMATICS  |x Essays.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Pre-Calculus.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Reference.  |2 bisacsh 
650 7 |a MATHEMATICS  |x General.  |2 bisacsh 
650 7 |a Mathematics  |x Study and teaching (Higher)  |2 fast  |0 (OCoLC)fst01012286 
776 0 8 |i Print version:  |n Druck-Ausgabe  |a Stillwell, John. Elements of Mathematics .  |t From Euclid to Godel 
776 0 8 |i Print version:  |a Stillwell, John.  |t Elements of mathematics.  |d Princeton : Princeton University Press, [2016]  |z 9780691171685  |w (DLC) 2015045022  |w (OCoLC)933596228 
856 4 0 |u https://jstor.uam.elogim.com/stable/10.2307/j.ctvc77h7p  |z Texto completo 
880 0 |6 505-00/(S  |a Cover -- Title -- Copyright -- Dedication -- Contents -- 1 Elementary Topics -- 1.1 Arithmetic -- 1.2 Computation -- 1.3 Algebra -- 1.4 Geometry -- 1.5 Calculus -- 1.6 Combinatorics -- 1.7 Probability -- 1.8 Logic -- 1.9 Historical Remarks -- 1.10 Philosophical Remarks -- 2 Arithmetic -- 2.1 The Euclidean Algorithm -- 2.2 Continued Fractions -- 2.3 Prime Numbers -- 2.4 Finite Arithmetic -- 2.5 Quadratic Integers -- 2.6 The Gaussian Integers -- 2.7 Euler's Proof Revisited -- 2.8 √2 and the Pell Equation -- 2.9 Historical Remarks -- 2.10 Philosophical Remarks -- 3 Computation -- 3.1 Numerals -- 3.2 Addition -- 3.3 Multiplication -- 3.4 Division -- 3.5 Exponentiation -- 3.6 P and NP Problems -- 3.7 Turing Machines -- 3.8 *Unsolvable Problems -- 3.9 *Universal Machines -- 3.10 Historical Remarks -- 3.11 Philosophical Remarks -- 4 Algebra -- 4.1 Classical Algebra -- 4.2 Rings -- 4.3 Fields -- 4.4 Two Theorems Involving Inverses -- 4.5 Vector Spaces -- 4.6 Linear Dependence, Basis, and Dimension -- 4.7 Rings of Polynomials -- 4.8 Algebraic Number Fields -- 4.9 Number Fields as Vector Spaces -- 4.10 Historical Remarks -- 4.11 Philosophical Remarks -- 5 Geometry -- 5.1 Numbers and Geometry -- 5.2 Euclid's Theory of Angles -- 5.3 Euclid's Theory of Area -- 5.4 Straightedge and Compass Constructions -- 5.5 Geometric Realization of Algebraic Operations -- 5.6 Algebraic Realization of Geometric Constructions -- 5.7 Vector Space Geometry -- 5.8 Introducing Length via the Inner Product -- 5.9 Constructible Number Fields -- 5.10 Historical Remarks -- 5.11 Philosophical Remarks -- 6 Calculus -- 6.1 Geometric Series -- 6.2 Tangents and Differentiation -- 6.3 Calculating Derivatives -- 6.4 Curved Areas -- 6.5 The Area under y = x^n -- 6.6 *The Fundamental Theorem of Calculus -- 6.7 Power Series for the Logarithm -- 6.8 *The Inverse Tangent Function and π. 
880 8 |6 505-00/(S  |a 6.9 Elementary Functions -- 6.10 Historical Remarks -- 6.11 Philosophical Remarks -- 7 Combinatorics -- 7.1 The Infinitude of Primes -- 7.2 Binomial Coefficients and Fermat's Little Theorem -- 7.3 Generating Functions -- 7.4 Graph Theory -- 7.5 Trees -- 7.6 Planar Graphs -- 7.7 The Euler Polyhedron Formula -- 7.8 Nonplanar Graphs -- 7.9 *The Kőnig Infinity Lemma -- 7.10 Sperner's Lemma -- 7.11 Historical Remarks -- 7.12 Philosophical Remarks -- 8 Probability -- 8.1 Probability and Combinatorics -- 8.2 Gambler's Ruin -- 8.3 Random Walk -- 8.4 Mean, Variance, and Standard Deviation -- 8.5 *The Bell Curve -- 8.6 Historical Remarks -- 8.7 Philosophical Remarks -- 9 Logic -- 9.1 Propositional Logic -- 9.2 Tautologies, Identities, and Satisfiability -- 9.3 Properties, Relations, and Quantifiers -- 9.4 Induction -- 9.5 *Peano Arithmetic -- 9.6 *The Real Numbers -- 9.7 *Infinity -- 9.8 *Set Theory -- 9.9 *Reverse Mathematics -- 9.10 Historical Remarks -- 9.11 Philosophical Remarks -- 10 Some Advanced Mathematics -- 10.1 Arithmetic: the Pell Equation -- 10.2 Computation: the Word Problem -- 10.3 Algebra: the Fundamental Theorem -- 10.4 Geometry: the Projective Line -- 10.5 Calculus: Wallis's Product for π -- 10.6 Combinatorics: Ramsey Theory -- 10.7 Probability: de Moivre's Distribution -- 10.8 Logic: the Completeness Theorem -- 10.9 Historical and Philosophical Remarks -- Bibliography -- Index. 
938 |a De Gruyter  |b DEGR  |n 9781400880560 
938 |a Coutts Information Services  |b COUT  |n 34172282 
938 |a EBL - Ebook Library  |b EBLB  |n EBL4336787 
938 |a YBP Library Services  |b YANK  |n 12758962 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis34172282 
938 |a EBSCOhost  |b EBSC  |n 1107942 
994 |a 92  |b IZTAP