Cargando…

Random fourier series with applications to harmonic analysis. (am-101).

In this book the authors give the first necessary and sufficient conditions for the uniform convergence a.s. of random Fourier series on locally compact Abelian groups and on compact non-Abelian groups. They also obtain many related results. For example, whenever a random Fourier series converges un...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Gilles Pisier
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton : Princeton Univ Press, 2016.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a22000003 4500
001 JSTOR_ocn945482817
003 OCoLC
005 20231005004200.0
006 m o d
007 cr |||||||||||
008 160323s1981 nju o 000 0 eng d
040 |a YDXCP  |b eng  |e pn  |c YDXCP  |d JSTOR  |d OCLCF  |d DEBBG  |d IDEBK  |d OCLCQ  |d N$T  |d OCLCQ  |d UIU  |d DEBSZ  |d COO  |d OCLCQ  |d IOG  |d TXC  |d LVT  |d OCLCQ  |d OCLCO  |d OCLCQ 
020 |a 1400881536  |q (electronic bk.) 
020 |a 9781400881536  |q (electronic bk.) 
029 1 |a CHBIS  |b 010896100 
029 1 |a CHVBK  |b 483381896 
029 1 |a DEBBG  |b BV043712413 
029 1 |a DEBSZ  |b 478624492 
029 1 |a AU@  |b 000065454673 
035 |a (OCoLC)945482817 
037 |a 22573/ctt1bbrpbw  |b JSTOR 
050 4 |a QA404  |b .M32 1981eb 
072 7 |a MAT016000  |2 bisacsh 
082 0 4 |a 515/.2433  |2 23 
049 |a UAMI 
100 1 |a Gilles Pisier. 
245 1 0 |a Random fourier series with applications to harmonic analysis. (am-101). 
260 |a Princeton :  |b Princeton Univ Press,  |c 2016. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file  |2 rda 
505 0 0 |t Frontmatter --  |t CONTENTS --  |t CHAPTER I: INTRODUCTION --  |t CHAPTER II: PRELIMINARIES --  |t CHAPTER III: RANDOM FOURIER SERIES ON LOCALLY COMPACT ABELIAN GROUPS --  |t CHAPTER IV: THE CENTRAL LIMIT THEOREM AND RELATED QUESTIONS --  |t CHAPTER V: RANDOM FOURIER SERIES ON COMPACT NON-ABELIAN GROUPS --  |t CHAPTER VI: APPLICATIONS TO HARMONIC ANALYSIS --  |t CHAPTER VII: ADDITIONAL RESULTS AND COMMENTS --  |t REFERENCES --  |t INDEX OF TERMINOLOGY --  |t INDEX OF NOTATIONS --  |t Backmatter 
520 |a In this book the authors give the first necessary and sufficient conditions for the uniform convergence a.s. of random Fourier series on locally compact Abelian groups and on compact non-Abelian groups. They also obtain many related results. For example, whenever a random Fourier series converges uniformly a.s. it also satisfies the central limit theorem. The methods developed are used to study some questions in harmonic analysis that are not intrinsically random. For example, a new characterization of Sidon sets is derived. The major results depend heavily on the Dudley-Fernique necessary and sufficient condition for the continuity of stationary Gaussian processes and on recent work on sums of independent Banach space valued random variables. It is noteworthy that the proofs for the Abelian case immediately extend to the non-Abelian case once the proper definition of random Fourier series is made. In doing this the authors obtain new results on sums of independent random matrices with elements in a Banach space. The final chapter of the book suggests several directions for further research. 
590 |a JSTOR  |b Books at JSTOR All Purchased 
590 |a JSTOR  |b Books at JSTOR Demand Driven Acquisitions (DDA) 
590 |a JSTOR  |b Books at JSTOR Evidence Based Acquisitions 
650 0 |a Fourier series. 
650 0 |a Harmonic analysis. 
650 6 |a Séries de Fourier. 
650 6 |a Analyse harmonique. 
650 7 |a MATHEMATICS  |x Infinity.  |2 bisacsh 
650 7 |a Fourier series.  |2 fast  |0 (OCoLC)fst00933405 
650 7 |a Harmonic analysis.  |2 fast  |0 (OCoLC)fst00951490 
856 4 0 |u https://jstor.uam.elogim.com/stable/10.2307/j.ctt1b9x2hm  |z Texto completo 
938 |a EBSCOhost  |b EBSC  |n 1432864 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis34227220 
938 |a YBP Library Services  |b YANK  |n 12886997 
994 |a 92  |b IZTAP