Cargando…

Introduction to algebraic K-theory /

Algebraic K-theory describes a branch of algebra that centers about two functors. K0 and K1, which assign to each associative ring ∧ an abelian group K0∧ or K1∧ respectively. Professor Milnor sets out, in the present work, to define and study an analogous functor K2, also from associative rings to a...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Milnor, John W. (John Willard), 1931-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton : Princeton Univ Press, 2016.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a22000003i 4500
001 JSTOR_ocn945482788
003 OCoLC
005 20231005004200.0
006 m o d
007 cr |||||||||||
008 160323s1971 nju o 000 0 eng d
040 |a YDXCP  |b eng  |e pn  |c YDXCP  |d JSTOR  |d OCLCO  |d OCLCF  |d DEBBG  |d OCLCQ  |d OCLCO  |d IDEBK  |d N$T  |d OCLCQ  |d UIU  |d DEBSZ  |d OCLCQ  |d IOG  |d EZ9  |d TXC  |d OCLCO  |d LVT  |d UKAHL  |d OCLCQ  |d RDF  |d OCLCO  |d OCLCQ  |d OCLCO 
020 |a 140088179X  |q (electronic bk.) 
020 |a 9781400881796  |q (electronic bk.) 
029 1 |a AU@  |b 000062471710 
029 1 |a CHBIS  |b 010896126 
029 1 |a CHVBK  |b 483394459 
029 1 |a DEBBG  |b BV043712439 
029 1 |a DEBSZ  |b 478624751 
029 1 |a GBVCP  |b 1003819613 
035 |a (OCoLC)945482788 
037 |a 22573/ctt1b9wdjh  |b JSTOR 
050 4 |a QA251.5  |b .M55 1971eb 
072 7 |a MAT002000  |2 bisacsh 
082 0 4 |a 512/.4  |2 23 
049 |a UAMI 
100 1 |a Milnor, John W.  |q (John Willard),  |d 1931- 
245 1 0 |a Introduction to algebraic K-theory /  |c by John Milnor. 
260 |a Princeton :  |b Princeton Univ Press,  |c 2016. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file  |2 rda 
520 |a Algebraic K-theory describes a branch of algebra that centers about two functors. K0 and K1, which assign to each associative ring ∧ an abelian group K0∧ or K1∧ respectively. Professor Milnor sets out, in the present work, to define and study an analogous functor K2, also from associative rings to abelian groups. Just as functors K0 and K1 are important to geometric topologists, K2 is now considered to have similar topological applications. The exposition includes, besides K-theory, a considerable amount of related arithmetic. 
590 |a JSTOR  |b Books at JSTOR Evidence Based Acquisitions 
590 |a JSTOR  |b Books at JSTOR All Purchased 
590 |a JSTOR  |b Books at JSTOR Demand Driven Acquisitions (DDA) 
650 0 |a Associative rings. 
650 0 |a Abelian groups. 
650 0 |a Functor theory. 
650 6 |a Anneaux associatifs. 
650 6 |a Groupes abéliens. 
650 6 |a Théorie des foncteurs. 
650 7 |a MATHEMATICS  |x Algebra  |x General.  |2 bisacsh 
650 7 |a Abelian groups  |2 fast 
650 7 |a Associative rings  |2 fast 
650 7 |a Functor theory  |2 fast 
856 4 0 |u https://jstor.uam.elogim.com/stable/10.2307/j.ctt1b9x0xv  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH31319018 
938 |a EBSCOhost  |b EBSC  |n 1432888 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis34227246 
938 |a YBP Library Services  |b YANK  |n 12887010 
994 |a 92  |b IZTAP