Cargando…

Advanced problems in mathematics : preparing for university /

"This book is intended to help students prepare for entrance examinations in mathematics and scientific subjects, including STEP (Sixth Term Examination Papers). STEP examinations are used by Cambridge colleges as the basis for conditional offers in mathematics and sometimes in other mathematic...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Siklos, S. T. C. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge : Open Book Publishers, [2016]
Colección:OBP series in mathematics ; v. 1.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 JSTOR_ocn938988868
003 OCoLC
005 20231005004200.0
006 m o d
007 cr |||||||||||
008 160211s2016 enk o 000 0 eng d
040 |a YDXCP  |b eng  |e pn  |c YDXCP  |d JSTOR  |d OCLCF  |d OBE  |d OCLCO  |d OCL  |d EBLCP  |d VT2  |d AUD  |d IDB  |d OCLCQ  |d OCLCO  |d MERUC  |d LOA  |d SOI  |d U3W  |d LND  |d ICG  |d OAPEN  |d CEF  |d INT  |d EZ9  |d U3G  |d OCLCQ  |d OTZ  |d OCLCQ  |d WYU  |d ICN  |d N$T  |d OCLCQ  |d G3B  |d IGB  |d BRX  |d STF  |d TXR  |d AUW  |d BTN  |d INTCL  |d MHW  |d SNK  |d CNTRU  |d UAB  |d OCLCQ  |d C6I  |d S2H  |d OCLCQ  |d BRF  |d OCLCQ  |d ERD  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d FIE  |d UEJ  |d ORU  |d HTM 
019 |a 993551796  |a 1107371476  |a 1116023843  |a 1148070935 
020 |a 1783741449  |q (electronic bk.) 
020 |a 9781783741441  |q (electronic bk.) 
020 |a 9781783741465 
020 |a 1783741465 
020 |a 9781783741458  |q (electronic bk.) 
020 |a 1783741457  |q (electronic bk.) 
020 |z 9781783741427  |q (pbk.) 
020 |z 1783741422  |q (pbk.) 
020 |a 1783741422 
020 |a 9781783741427 
024 3 |a 9781783741427 
029 1 |a AU@  |b 000058393066 
029 1 |a CHNEW  |b 000912645 
029 1 |a AU@  |b 000066974152 
035 |a (OCoLC)938988868  |z (OCoLC)993551796  |z (OCoLC)1107371476  |z (OCoLC)1116023843  |z (OCoLC)1148070935 
037 |a 22573/ctt19r08fc  |b JSTOR 
050 4 |a QA43  |b .S55 2016eb 
072 7 |a MAT  |x 039000  |2 bisacsh 
072 7 |a MAT  |x 023000  |2 bisacsh 
072 7 |a MAT  |x 026000  |2 bisacsh 
082 0 4 |a 510.76  |2 23 
049 |a UAMI 
100 1 |a Siklos, S. T. C.,  |e author. 
245 1 0 |a Advanced problems in mathematics :  |b preparing for university /  |c Stephen Siklos. 
264 1 |a Cambridge :  |b Open Book Publishers,  |c [2016] 
264 4 |c ©2016 
300 |a 1 online resource (186 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file 
490 1 |a OBP series in mathematics,  |x 2387-1134 ;  |v v. 1 
542 |a This work is licensed under a Creative Commons Attribution 4.0 International license (CC BY-SA 4.0), http://creativecommons.org/licenses/by-sa/4.0. 
505 0 |a About this book -- STEP -- Worked Problems ; Worked problem 1 ; Worked problem 2 ; Problems -- P1 An integer equation P2 Partitions of 10 and 20 P3 Mathematical deduction P4 Divisibility P5 The modulus function P6 The regular Reuleaux heptagon P7 Chain of equations P8 Trig. equations P9 Integration by substitution P10 True or false P11 Egyptian fractions P12 Maximising with constraints P13 Binomial expansion P14 Sketching subsets of the plane P15 More sketching subsets of the plane P16 Non-linear simultaneous equations P17 Inequalities P18 Inequalities from cubics P19 Logarithms P20 Cosmological models P21 Melting snowballs P22 Gregory's series P23 Intersection of ellipses P24 Sketching x m ( 1 − x ) n P25 Inequalities by area estimates P26 Simultaneous integral equations P27 Relation between coefficients of quartic for real roots P28 Fermat numbers P29 Telescoping series P30 Integer solutions of cubics P31 The harmonic series P32 Integration by substitution P33 More curve sketching P34 Trig sum P35 Roots of a cubic equation P36 Root counting P37 Irrationality of e P38 Discontinuous integrands P39 A difficult integral P40 Estimating the value of an integral P41 Integrating the modulus function P42 Geometry P43 The t substitution P44 A differential-difference equation P45 Lagrange's identity P46 Bernoulli polynomials P47 Vector geometry P48 Solving a quartic P49 Areas and volumes P50 More curve sketching P51 Spherical loaf P52 Snowploughing P53 Tortoise and hare P54 How did the chicken cross the road? P55 Hank's gold mine P56 A chocolate orange P57 Lorry on bend P58 Fielding P59 Equilibrium of rod of non-uniform density P60 Newton's cradle P61 Kinematics of rotating target P62 Particle on wedge P63 Sphere on step P64 Elastic band on cylinder P65 A knock-out tournament P66 Harry the calculating horse P67 PIN guessing P68 Breaking plates P69 Lottery P70 Bodies in the fridge P71 Choosing keys P72 Commuting by train P73 Collecting voles P74 Breaking a stick P75 Random quadratics -- Syllabus 
520 |a "This book is intended to help students prepare for entrance examinations in mathematics and scientific subjects, including STEP (Sixth Term Examination Papers). STEP examinations are used by Cambridge colleges as the basis for conditional offers in mathematics and sometimes in other mathematics-related subjects. They are also used by Warwick University, and many other mathematics departments recommend that their applicants practice on past papers to become accustomed to university-style mathematics. Advanced Problems in Mathematics is recommended as preparation for any undergraduate mathematics course, even for students who do not plan to take the Sixth Term Examination Paper. The questions analysed in this book are all based on recent STEP questions selected to address the syllabus for Papers I and II, which is the A-level core (i.e. C1 to C4) with a few additions. Each question is followed by a comment and a full solution. The comments direct the reader's attention to key points and put the question in its true mathematical context. The solutions point students to the methodology required to address advanced mathematical problems critically and independently."--Publisher's website 
590 |a JSTOR  |b Books at JSTOR All Purchased 
590 |a JSTOR  |b Books at JSTOR Open Access 
650 0 |a Mathematics  |x Study and teaching (Higher) 
650 0 |a Calculus  |v Problems, exercises, etc. 
650 0 |a Geometry  |v Problems, exercises, etc. 
650 0 |a Probabilities  |v Problems, exercises, etc. 
650 0 |a Mathematics  |v Problems, exercises, etc. 
650 0 |a Mathematics  |v Examinations, questions, etc. 
650 7 |a Mathematics and science.  |2 bicssc 
650 7 |a Mathematics.  |2 bicssc 
650 7 |a MATHEMATICS  |x Geometry  |x General.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Essays.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Pre-Calculus.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Reference.  |2 bisacsh 
650 7 |a Calculus.  |2 fast  |0 (OCoLC)fst00844119 
650 7 |a Geometry.  |2 fast  |0 (OCoLC)fst00940864 
650 7 |a Mathematics.  |2 fast  |0 (OCoLC)fst01012163 
650 7 |a Mathematics  |x Study and teaching (Higher)  |2 fast  |0 (OCoLC)fst01012286 
650 7 |a Probabilities.  |2 fast  |0 (OCoLC)fst01077737 
655 7 |a Examinations.  |2 fast  |0 (OCoLC)fst01423780 
655 7 |a Problems and exercises.  |2 fast  |0 (OCoLC)fst01423783 
655 7 |a Problems and exercises.  |2 lcgft 
655 7 |a Examinations.  |2 lcgft 
830 0 |a OBP series in mathematics ;  |v v. 1. 
856 4 0 |u https://jstor.uam.elogim.com/stable/10.2307/j.ctt19qggvb  |z Texto completo 
938 |a OAPEN Foundation  |b OPEN  |n 633792 
938 |a YBP Library Services  |b YANK  |n 12840897 
938 |a EBSCOhost  |b EBSC  |n 1166471 
994 |a 92  |b IZTAP