Cargando…

The p-adic Simpson correspondence /

The p-adic Simpson correspondence, recently initiated by Gerd Faltings, aims at describing all p-adic representations of the fundamental group of a proper smooth variety over a p-adic field in terms of linear algebra--namely Higgs bundles. This book undertakes a systematic development of the theory...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Abbes, Ahmed (Autor), Gros, Michel, 1956- (Autor), Tsuji, Takeshi, 1967- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton : Princeton University Press, 2016.
Colección:Annals of mathematics studies ; no. 193.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 JSTOR_ocn934626614
003 OCoLC
005 20231005004200.0
006 m o d
007 cr cnu---unuuu
008 160113s2016 nju ob 001 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d IDEBK  |d EBLCP  |d YDXCP  |d JSTOR  |d CDX  |d COO  |d CCO  |d COCUF  |d LOA  |d MERUC  |d K6U  |d PIFAG  |d FVL  |d VGM  |d OCLCQ  |d DEGRU  |d DEBBG  |d OCLCF  |d ZCU  |d U3W  |d TXI  |d EZ9  |d WRM  |d STF  |d CUS  |d OCLCQ  |d ICG  |d VT2  |d OCLCQ  |d WYU  |d TKN  |d LEAUB  |d DKC  |d OCLCQ  |d UKAHL  |d OCLCQ  |d SFB  |d OCLCQ  |d MM9  |d TEFOD  |d TEF  |d IEEEE  |d OCLCO  |d S2H  |d OCLCQ  |d OCLCO  |d OCLCQ  |d YWS  |d OCLCO 
019 |a 951746703  |a 979882297  |a 992824017  |a 1055352111  |a 1066676203  |a 1159899327  |a 1228605201 
020 |a 9781400881239  |q (electronic bk.) 
020 |a 1400881234  |q (electronic bk.) 
020 |z 9780691170282 
020 |z 0691170282 
020 |z 9780691170299 
020 |z 0691170290 
024 7 |a 10.1515/9781400881239  |2 doi 
029 1 |a AU@  |b 000057046176 
029 1 |a CHBIS  |b 010896084 
029 1 |a CHVBK  |b 48339100X 
029 1 |a DEBBG  |b BV043599262 
029 1 |a DEBBG  |b BV043719261 
029 1 |a DKDLA  |b 820120-katalog:999935699305765 
035 |a (OCoLC)934626614  |z (OCoLC)951746703  |z (OCoLC)979882297  |z (OCoLC)992824017  |z (OCoLC)1055352111  |z (OCoLC)1066676203  |z (OCoLC)1159899327  |z (OCoLC)1228605201 
037 |a 22573/ctt193cjds  |b JSTOR 
037 |a 9452437  |b IEEE 
050 4 |a QA179  |b .A23 2016eb 
072 7 |a MAT  |x 002040  |2 bisacsh 
072 7 |a MAT002000  |2 bisacsh 
072 7 |a MAT000000  |2 bisacsh 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a MAT002050  |2 bisacsh 
082 0 4 |a 512/.2  |2 23 
084 |a SI 830  |2 rvk  |0 (DE-625)rvk/143195: 
049 |a UAMI 
100 1 |a Abbes, Ahmed,  |e author. 
245 1 4 |a The p-adic Simpson correspondence /  |c Ahmed Abbes, Michel Gros, Takeshi Tsuji. 
264 1 |a Princeton :  |b Princeton University Press,  |c 2016. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
347 |b PDF 
490 1 |a Annals of Mathematics Studies ;  |v 193 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record. 
546 |a In English. 
505 0 0 |g Frontmatter --  |g Contents --  |g Foreword --  |g Chapter I.  |t Representations of the fundamental group and the torsor of deformations. An overview --  |g Chapter II.  |t Representations of the fundamental group and the torsor of deformations. Local study --  |g Chapter III.  |t Representations of the fundamental group and the torsor of deformations. Global aspects --  |g Chapter IV.  |t Cohomology of Higgs isocrystals --  |g Chapter V.  |t Almost étale coverings --  |g Chapter VI.  |t Covanishing topos and generalizations --  |t Facsimile : A p-adic Simpson correspondence --  |g Bibliography --  |g Indexes. 
520 |a The p-adic Simpson correspondence, recently initiated by Gerd Faltings, aims at describing all p-adic representations of the fundamental group of a proper smooth variety over a p-adic field in terms of linear algebra--namely Higgs bundles. This book undertakes a systematic development of the theory following two new approaches, one by Ahmed Abbes and Michel Gros, the other by Takeshi Tsuji. The authors mainly focus on generalized representations of the fundamental group that are p-adically close to the trivial representation. The first approach relies on a new family of period rings built from the torsor of deformations of the variety over a universal p-adic thickening defined by J.M. Fontaine. The second approach introduces a crystalline-type topos and replaces the notion of Higgs bundles with that of Higgs isocrystals. The authors show the compatibility of the two constructions and the compatibility of the correspondence with the natural cohomologies. The last part of the volume contains results of wider interest in p-adic Hodge theory. The reader will find a concise introduction to Faltings' theory of almost étale extensions and a chapter devoted to the Faltings topos. Though this topos is the general framework for Faltings' approach in p-adic Hodge theory, it remains relatively unexplored. The authors present a new approach based on a generalization of P. Deligne's covanishing topos. 
590 |a JSTOR  |b Books at JSTOR Demand Driven Acquisitions (DDA) 
590 |a JSTOR  |b Books at JSTOR All Purchased 
590 |a JSTOR  |b Books at JSTOR Evidence Based Acquisitions 
650 0 |a Group theory. 
650 0 |a p-adic groups. 
650 0 |a Geometry, Algebraic. 
650 6 |a Théorie des groupes. 
650 6 |a Groupes p-adiques. 
650 6 |a Géométrie algébrique. 
650 7 |a MATHEMATICS  |x Algebra  |x Intermediate.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Algebra  |x General.  |2 bisacsh 
650 7 |a Geometry, Algebraic  |2 fast 
650 7 |a Group theory  |2 fast 
650 7 |a p-adic groups  |2 fast 
653 |a Dolbeault generalized representation. 
653 |a Dolbeault module. 
653 |a Dolbeault representation. 
653 |a Faltings cohomology. 
653 |a Faltings extension. 
653 |a Faltings ringed topos. 
653 |a Faltings site. 
653 |a Faltings topos. 
653 |a Galois cohomology. 
653 |a Gerd Faltings. 
653 |a Higgs bundle. 
653 |a Higgs bundles. 
653 |a Higgs crystals. 
653 |a Higgs envelopes. 
653 |a Higgs isocrystal. 
653 |a Hyodo's theory. 
653 |a Koszul complex. 
653 |a additive categories. 
653 |a adic module. 
653 |a almost faithfully flat descent. 
653 |a almost faithfully flat module. 
653 |a almost flat module. 
653 |a almost isomorphism. 
653 |a almost tale covering. 
653 |a almost tale extension. 
653 |a cohomology. 
653 |a covanishing topos. 
653 |a crystalline-type topos. 
653 |a deformation. 
653 |a finite tale site. 
653 |a fundamental group. 
653 |a generalized covanishing topos. 
653 |a generalized representation. 
653 |a inverse limit. 
653 |a linear algebra. 
653 |a locally irreducible scheme. 
653 |a morphism. 
653 |a overconvergence. 
653 |a p-adic Hodge theory. 
653 |a p-adic Simpson correspondence. 
653 |a p-adic field. 
653 |a period ring. 
653 |a ringed covanishing topos. 
653 |a ringed total topos. 
653 |a small generalized representation. 
653 |a small representation. 
653 |a solvable Higgs module. 
653 |a tale cohomology. 
653 |a tale fundamental group. 
653 |a torsor. 
700 1 |a Gros, Michel,  |d 1956-  |e author. 
700 1 |a Tsuji, Takeshi,  |d 1967-  |e author. 
776 0 8 |i Print version:  |a Abbes, Ahmed.  |t P-adic Simpson correspondence  |z 9780691170282  |w (DLC) 2015031778  |w (OCoLC)920683285 
830 0 |a Annals of mathematics studies ;  |v no. 193. 
856 4 0 |u https://jstor.uam.elogim.com/stable/10.2307/j.ctt18z4hm7  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH30328298 
938 |a Coutts Information Services  |b COUT  |n 33531281 
938 |a De Gruyter  |b DEGR  |n 9781400881239 
938 |a EBL - Ebook Library  |b EBLB  |n EBL4198328 
938 |a EBSCOhost  |b EBSC  |n 1090904 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis33531281 
938 |a YBP Library Services  |b YANK  |n 12759014 
994 |a 92  |b IZTAP