Complex ball quotients and line arrangements in the projective plane /
This book introduces the theory of complex surfaces through a comprehensive look at finite covers of the projective plane branched along line arrangements. Paula Tretkoff emphasizes those finite covers that are free quotients of the complex two-dimensional ball. Tretkoff also includes background on...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Princeton :
Princeton University Press,
[2016]
|
Colección: | Mathematical notes ;
51. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Frontmatter
- Contents
- Preface
- Introduction
- Chapter One. Topological Invariants and Differential Geometry
- Chapter Two. Riemann Surfaces, Coverings, and Hypergeometric Functions
- Chapter Three. Complex Surfaces and Coverings
- Chapter Four. Algebraic Surfaces and the Miyaoka-Yau Inequality
- Chapter Five. Line Arrangements in P2(C) and Their Finite Covers
- Chapter Six. Existence of Ball Quotients Covering Line Arrangements
- Chapter Seven. Appell Hypergeometric Functions
- Appendix A. Torsion-Free Subgroups of Finite Index by Hans-Christoph Im Hof
- Appendix B. Kummer Coverings
- Bibliography
- Index.