Cargando…

Complex ball quotients and line arrangements in the projective plane /

This book introduces the theory of complex surfaces through a comprehensive look at finite covers of the projective plane branched along line arrangements. Paula Tretkoff emphasizes those finite covers that are free quotients of the complex two-dimensional ball. Tretkoff also includes background on...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Tretkoff, Paula, 1957- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton : Princeton University Press, [2016]
Colección:Mathematical notes ; 51.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ii 4500
001 JSTOR_ocn934433896
003 OCoLC
005 20231005004200.0
006 m o d
007 cr cnu---unuuu
008 160111s2016 nju ob 001 0 eng d
010 |a  2015016120 
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d N$T  |d IDEBK  |d EBLCP  |d YDXCP  |d CDX  |d JSTOR  |d DEBSZ  |d DEBBG  |d IDB  |d OCLCQ  |d CUY  |d IOG  |d DEGRU  |d MERUC  |d OTZ  |d OCLCQ  |d WYU  |d UKAHL  |d OCLCQ  |d UX1  |d IEEEE  |d OCLCO  |d OCLCQ  |d SFB  |d OCLCQ  |d OCLCO 
019 |a 979728671  |a 992886885  |a 1175635550 
020 |a 9781400881253  |q (electronic bk.) 
020 |a 1400881250  |q (electronic bk.) 
020 |z 9780691144771 
020 |z 069114477X 
024 7 |a 10.1515/9781400881253  |2 doi 
029 1 |a AU@  |b 000057046071 
029 1 |a DEBBG  |b BV043712398 
029 1 |a DEBBG  |b BV043892846 
029 1 |a DEBSZ  |b 461175096 
029 1 |a GBVCP  |b 879460512 
035 |a (OCoLC)934433896  |z (OCoLC)979728671  |z (OCoLC)992886885  |z (OCoLC)1175635550 
037 |a 22573/ctt1b9wfsm  |b JSTOR 
037 |a 9452449  |b IEEE 
050 4 |a QA567.2.E44  |b T74 2016eb 
072 7 |a MAT  |x 012000  |2 bisacsh 
072 7 |a MAT012000  |2 bisacsh 
072 7 |a MAT000000  |2 bisacsh 
082 0 4 |a 516.3/52  |2 23 
049 |a UAMI 
100 1 |a Tretkoff, Paula,  |d 1957-  |e author. 
245 1 0 |a Complex ball quotients and line arrangements in the projective plane /  |c Paula Tretkoff. 
264 1 |a Princeton :  |b Princeton University Press,  |c [2016] 
264 4 |c ©2016 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Mathematical notes ;  |v 51 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record. 
505 0 0 |t Frontmatter --  |t Contents --  |t Preface --  |t Introduction --  |t Chapter One. Topological Invariants and Differential Geometry --  |t Chapter Two. Riemann Surfaces, Coverings, and Hypergeometric Functions --  |t Chapter Three. Complex Surfaces and Coverings --  |t Chapter Four. Algebraic Surfaces and the Miyaoka-Yau Inequality --  |t Chapter Five. Line Arrangements in P2(C) and Their Finite Covers --  |t Chapter Six. Existence of Ball Quotients Covering Line Arrangements --  |t Chapter Seven. Appell Hypergeometric Functions --  |t Appendix A. Torsion-Free Subgroups of Finite Index by Hans-Christoph Im Hof --  |t Appendix B. Kummer Coverings --  |t Bibliography --  |t Index. 
520 |a This book introduces the theory of complex surfaces through a comprehensive look at finite covers of the projective plane branched along line arrangements. Paula Tretkoff emphasizes those finite covers that are free quotients of the complex two-dimensional ball. Tretkoff also includes background on the classical Gauss hypergeometric function of one variable, and a chapter on the Appell two-variable F1 hypergeometric function. The material in this book began as a set of lecture notes, taken by Tretkoff, of a course given by Friedrich Hirzebruch at ETH Zürich in 1996. The lecture notes were then considerably expanded by Hirzebruch and Tretkoff over a number of years. In this book, Tretkoff has expanded those notes even further, still stressing examples offered by finite covers of line arrangements. The book is largely self-contained and foundational material is introduced and explained as needed, but not treated in full detail. References to omitted material are provided for interested readers. Aimed at graduate students and researchers, this is an accessible account of a highly informative area of complex geometry. 
546 |a In English. 
590 |a JSTOR  |b Books at JSTOR Demand Driven Acquisitions (DDA) 
590 |a JSTOR  |b Books at JSTOR Evidence Based Acquisitions 
590 |a JSTOR  |b Books at JSTOR All Purchased 
650 0 |a Curves, Elliptic. 
650 0 |a Geometry, Algebraic. 
650 0 |a Projective planes. 
650 0 |a Unit ball. 
650 0 |a Riemann surfaces. 
650 6 |a Courbes elliptiques. 
650 6 |a Géométrie algébrique. 
650 6 |a Plans projectifs. 
650 6 |a Boule unité. 
650 6 |a Surfaces de Riemann. 
650 7 |a MATHEMATICS  |x Geometry  |x General.  |2 bisacsh 
650 7 |a Curves, Elliptic  |2 fast 
650 7 |a Geometry, Algebraic  |2 fast 
650 7 |a Projective planes  |2 fast 
650 7 |a Riemann surfaces  |2 fast 
650 7 |a Unit ball  |2 fast 
776 0 8 |i Print version:  |a Tretkoff, Paula, 1957-  |t Complex ball quotients and line arrangements in the projective plane  |z 9780691144771  |w (DLC) 2015016120  |w (OCoLC)907948438 
830 0 |a Mathematical notes ;  |v 51. 
856 4 0 |u https://jstor.uam.elogim.com/stable/10.2307/j.ctt1b9x15z  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH30141242 
938 |a Coutts Information Services  |b COUT  |n 33383069 
938 |a De Gruyter  |b DEGR  |n 9781400881253 
938 |a EBL - Ebook Library  |b EBLB  |n EBL4312672 
938 |a EBSCOhost  |b EBSC  |n 1090927 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis33383069 
938 |a YBP Library Services  |b YANK  |n 12759016 
994 |a 92  |b IZTAP