Cargando…

Classification of pseudo-reductive groups /

In the earlier monograph Pseudo-reductive Groups, Brian Conrad, Ofer Gabber, and Gopal Prasad explored the general structure of pseudo-reductive groups. In this new book, Classification of Pseudo-reductive Groups, Conrad and Prasad go further to study the classification over an arbitrary field. An i...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Conrad, Brian, 1970-
Otros Autores: Prasad, Gopal
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton : Princeton University Press, 2016.
Colección:Annals of mathematics studies ; no. 191.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 JSTOR_ocn930040951
003 OCoLC
005 20231005004200.0
006 m o d
007 cr |n|||||||||
008 151120s2016 nju ob 001 0 eng d
010 |a  2015023803 
040 |a YDXCP  |b eng  |e rda  |e pn  |c YDXCP  |d OCLCO  |d IDEBK  |d N$T  |d OCLCF  |d CDX  |d COO  |d OCLCO  |d JSTOR  |d EBLCP  |d DEBBG  |d UIU  |d CCO  |d COCUF  |d MOA  |d MERUC  |d K6U  |d DEBSZ  |d PIFAG  |d FVL  |d OCLCQ  |d ZCU  |d U3W  |d EZ9  |d WRM  |d STF  |d OCLCQ  |d ICG  |d VT2  |d OCLCQ  |d WYU  |d TKN  |d DKC  |d OCLCQ  |d SFB  |d OCLCQ  |d VLY  |d MM9  |d IEEEE  |d OCLCO  |d S2H  |d OCLCO  |d INARC  |d OCLCQ  |d YWS  |d OCLCO 
019 |a 922702226  |a 932328021  |a 1055356148  |a 1066678245  |a 1228573392 
020 |a 1400874025  |q (electronic bk.) 
020 |a 9781400874026  |q (electronic bk.) 
020 |z 9780691167923  |q (hardcover ;  |q alk. paper) 
020 |z 0691167923  |q (hardcover ;  |q alk. paper) 
020 |z 9780691167930  |q (pbk. ;  |q alk. paper) 
020 |z 0691167931  |q (pbk. ;  |q alk. paper) 
024 7 |a 10.1515/9781400874026  |2 doi 
029 1 |a DEBBG  |b BV043598828 
029 1 |a GBVCP  |b 861794389 
029 1 |a DEBSZ  |b 47798486X 
029 1 |a AU@  |b 000060077744 
029 1 |a AU@  |b 000068443163 
035 |a (OCoLC)930040951  |z (OCoLC)922702226  |z (OCoLC)932328021  |z (OCoLC)1055356148  |z (OCoLC)1066678245  |z (OCoLC)1228573392 
037 |a 832712  |b MIL 
037 |a 22573/ctt193f7hw  |b JSTOR 
037 |a 9452403  |b IEEE 
050 4 |a QA179  |b .C665 2016 
072 7 |a MAT  |x 002040  |2 bisacsh 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a MAT022000  |2 bisacsh 
072 7 |a MAT012010  |2 bisacsh 
082 0 4 |a 512/.55  |2 23 
049 |a UAMI 
100 1 |a Conrad, Brian,  |d 1970- 
245 1 0 |a Classification of pseudo-reductive groups /  |c Brian Conrad, Gopal Prasad. 
264 4 |c ©2016 
264 1 |a Princeton :  |b Princeton University Press,  |c 2016. 
300 |a 1 online resource (1 volume) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Annals of mathematics studies ;  |v number 191 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record. 
520 |a In the earlier monograph Pseudo-reductive Groups, Brian Conrad, Ofer Gabber, and Gopal Prasad explored the general structure of pseudo-reductive groups. In this new book, Classification of Pseudo-reductive Groups, Conrad and Prasad go further to study the classification over an arbitrary field. An isomorphism theorem proved here determines the automorphism schemes of these groups. The book also gives a Tits-Witt type classification of isotropic groups and displays a cohomological obstruction to the existence of pseudo-split forms. Constructions based on regular degenerate quadratic forms and new techniques with central extensions provide insight into new phenomena in characteristic 2, which also leads to simplifications of the earlier work. A generalized standard construction is shown to account for all possibilities up to mild central extensions. The results and methods developed in Classification of Pseudo-reductive Groups will interest mathematicians and graduate students who work with algebraic groups in number theory and algebraic geometry in positive characteristic. 
546 |a In English. 
505 0 |a Cover; Title; Copyright; Contents; 1 Introduction; 1.1 Motivation; 1.2 Root systems and new results; 1.3 Exotic groups and degenerate quadratic forms; 1.4 Tame central extensions; 1.5 Generalized standard groups; 1.6 Minimal type and general structure theorem; 1.7 Galois-twisted forms and Tits classification; 1.8 Background, notation, and acknowledgments; 2 Preliminary notions; 2.1 Standard groups, Levi subgroups, and root systems; 2.2 The basic exotic construction; 2.3 Minimal type; 3 Field-theoretic and linear-algebraic invariants; 3.1 A non-standard rank-1 construction 
590 |a JSTOR  |b Books at JSTOR All Purchased 
590 |a JSTOR  |b Books at JSTOR Evidence Based Acquisitions 
590 |a JSTOR  |b Books at JSTOR Demand Driven Acquisitions (DDA) 
650 0 |a Linear algebraic groups. 
650 0 |a Group theory. 
650 0 |a Geometry, Algebraic. 
650 6 |a Groupes linéaires algébriques. 
650 6 |a Théorie des groupes. 
650 6 |a Géométrie algébrique. 
650 7 |a MATHEMATICS  |x Algebra  |x Intermediate.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Mathematical Analysis.  |2 bisacsh 
650 7 |a Geometry, Algebraic  |2 fast 
650 7 |a Group theory  |2 fast 
650 7 |a Linear algebraic groups  |2 fast 
653 |a "ient homomorphism. 
653 |a Cartan k-subgroup. 
653 |a Dynkin diagram. 
653 |a Isogeny Theorem. 
653 |a Isomorphism Theorem. 
653 |a Levi subgroup. 
653 |a Tits classification. 
653 |a Tits-style classification. 
653 |a Weil restriction. 
653 |a algebraic geometry. 
653 |a automorphism functor. 
653 |a automorphism scheme. 
653 |a automorphism. 
653 |a canonical central extensions. 
653 |a central "ient. 
653 |a central extension. 
653 |a characteristic 2. 
653 |a conformal isometry. 
653 |a degenerate quadratic form. 
653 |a double bond. 
653 |a exotic construction. 
653 |a field-theoretic invariant. 
653 |a generalized exotic group. 
653 |a generalized standard group. 
653 |a generalized standard presentation. 
653 |a generalized standard. 
653 |a isomorphism class. 
653 |a isomorphism. 
653 |a isotropic group. 
653 |a k-tame central extension. 
653 |a linear isomorphism. 
653 |a linear-algebraic invariant. 
653 |a maximal torus. 
653 |a minimal type. 
653 |a non-reduced root system. 
653 |a number theory. 
653 |a pseudo-isogeny. 
653 |a pseudo-reductive group. 
653 |a pseudo-semisimple group. 
653 |a pseudo-simple group. 
653 |a pseudo-simple k-group. 
653 |a pseudo-split form. 
653 |a pseudo-split. 
653 |a quadratic space. 
653 |a quadrics. 
653 |a rank-1. 
653 |a rank-2. 
653 |a rigidity property. 
653 |a root field. 
653 |a root system. 
653 |a scheme-theoretic center. 
653 |a semisimple "ient. 
653 |a semisimple k-group. 
653 |a structure theorem. 
700 1 |a Prasad, Gopal. 
776 0 8 |i Print version:  |z 9780691167923  |z 0691167923  |w (DLC) 2015023803 
830 0 |a Annals of mathematics studies ;  |v no. 191. 
856 4 0 |u https://jstor.uam.elogim.com/stable/10.2307/j.ctt18z4hnr  |z Texto completo 
938 |a Internet Archive  |b INAR  |n classificationof0000conr 
938 |a YBP Mibrary Services  |b YANK  |n 12428293 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis32782141 
938 |a EBSCOhost  |b EBSC  |n 1063812 
938 |a Coutts Information Services  |b COUT  |n 32782141 
938 |a EBL - Ebook Mibrary  |b EBLB  |n EBL4001611 
994 |a 92  |b IZTAP