Cargando…

Notes on cobordism theory /

These notes represent the outgrowth of an offer by Princeton University to let me teach a graduate level course in cobordism theory. Even though cobordism notions appear in the earliest literature of algebraic topology, it has only been since the work of Thorn in 1954 that more than isolated results...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Stong, Robert E.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton, N.J. : Princeton University Press, ©1968.
Colección:Mathematical notes (Princeton University Press)
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 JSTOR_ocn927405347
003 OCoLC
005 20231005004200.0
006 m o d
007 cr cnu---unuuu
008 151103s1968 nju ob 000 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d IDEBK  |d YDXCP  |d JSTOR  |d DEBBG  |d EBLCP  |d OCLCQ  |d EZ9  |d TXC  |d TXI  |d LVT  |d OCL  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d FAU  |d OCL  |d OCLCQ  |d OCLCO 
019 |a 947725749  |a 1001990231 
020 |a 9781400879977  |q (electronic bk.) 
020 |a 1400879973  |q (electronic bk.) 
029 1 |a AU@  |b 000056999054 
029 1 |a CHBIS  |b 011057971 
029 1 |a CHVBK  |b 498853500 
029 1 |a DEBBG  |b BV043598892 
029 1 |a DEBSZ  |b 477985513 
029 1 |a GBVCP  |b 1003814921 
029 1 |a GBVCP  |b 861795024 
035 |a (OCoLC)927405347  |z (OCoLC)947725749  |z (OCoLC)1001990231 
037 |a 22573/ctt182br6b  |b JSTOR 
050 4 |a QA611  |b .S88eb 
072 7 |a MAT  |x 004000  |2 bisacsh 
072 7 |a MAT012000  |2 bisacsh 
082 0 4 |a 513/.83  |2 22 
049 |a UAMI 
100 1 |a Stong, Robert E. 
245 1 0 |a Notes on cobordism theory /  |c by Robert E. Stong. 
264 1 |a Princeton, N.J. :  |b Princeton University Press,  |c ©1968. 
300 |a 1 online resource (ii, 354, 23, 25, viii pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file 
490 1 |a Mathematical notes 
504 |a Includes bibliographical references (pages i-viii (5th group)). 
505 0 0 |t Introduction : Cobordism categories --  |t Manifolds with structure : the Pontrjagin-Thom theorem --  |t Characteristic classes and numbers --  |t The interesting examples : a survey of the literature --  |t Cohomology of classifying spaces --  |t Unoriented Cobordism --  |t Complex Cobordism -- [superscript lowercase Greek]Sigma [over] [subscript]l : restricted Cobordism --  |t Oriented Cobordism --  |t Special unitary Cobordism --  |t Spin, spin [superscript]c and similar nonsense --  |g Appendix I.  |t Advanced calculus --  |g Appendix II.  |t Differentiable manifolds. 
520 |a These notes represent the outgrowth of an offer by Princeton University to let me teach a graduate level course in cobordism theory. Even though cobordism notions appear in the earliest literature of algebraic topology, it has only been since the work of Thorn in 1954 that more than isolated results have been available. Since that time the growth of this area has been phenomenal but has largely taken the form of individual research papers. To a certain extent, the nature of cobordism as a classificational tool has led to the study of many individual applications rather than the development of a central theory. There is no complete exposition of the fundamental results of cobordism theory, and it is hoped that these notes may help to fill this gap. Being intended for graduate and research level work, no attempt is made here to use only elementary ideas. It is assumed that the reader knows algebraic topology thoroughly, with cobordism being treated here as an application of topology. In many cases this is not the fashion in which development took place, for ideas from cobordism have frequently led to new methods in topology itself. 
588 0 |a Print version record. 
590 |a JSTOR  |b Books at JSTOR Evidence Based Acquisitions 
590 |a JSTOR  |b Books at JSTOR All Purchased 
590 |a JSTOR  |b Books at JSTOR Demand Driven Acquisitions (DDA) 
650 0 |a Cobordism theory. 
650 0 |a Differential topology. 
650 0 |a Topology. 
650 0 |a Manifolds (Mathematics) 
650 0 |a Algebraic topology. 
650 6 |a Topologie algébrique. 
650 6 |a Théorie des cobordismes. 
650 6 |a Topologie différentielle. 
650 6 |a Topologie. 
650 6 |a Variétés (Mathématiques) 
650 7 |a MATHEMATICS  |x Arithmetic.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Geometry  |x General.  |2 bisacsh 
650 7 |a Algebraic topology  |2 fast 
650 7 |a Topology  |2 fast 
650 7 |a Manifolds (Mathematics)  |2 fast 
650 7 |a Differential topology  |2 fast 
650 7 |a Cobordism theory  |2 fast 
776 0 8 |i Print version:  |a Stong, Robert E.  |t Notes on cobordism theory  |w (DLC) 71003315  |w (OCoLC)7124 
830 0 |a Mathematical notes (Princeton University Press) 
856 4 0 |u https://jstor.uam.elogim.com/stable/10.2307/j.ctt183pnqj  |z Texto completo 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL4071252 
938 |a EBSCOhost  |b EBSC  |n 1078813 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis33004005 
938 |a YBP Library Services  |b YANK  |n 12681511 
994 |a 92  |b IZTAP