Cargando…

Single digits : in praise of small numbers /

The numbers one through nine have remarkable mathematical properties and characteristics. For instance, why do eight perfect card shuffles leave a standard deck of cards unchanged? Are there really "six degrees of separation" between all pairs of people? And how can any map need only four...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Chamberland, Marc, 1964- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton : Princeton University Press, [2015]
Colección:EBL-Schweitzer
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ii 4500
001 JSTOR_ocn909908463
003 OCoLC
005 20231005004200.0
006 m o d
007 cr cn|||||||||
008 141208t20152015njuab ob 001 0 eng d
010 |z  2014047680 
040 |a E7B  |b eng  |e rda  |e pn  |c E7B  |d OCLCO  |d GK8  |d OCLCO  |d OSU  |d IDEBK  |d YDXCP  |d N15  |d COO  |d N$T  |d OCLCO  |d DEBSZ  |d OCLCA  |d CTW  |d OCLCO  |d OCLCF  |d OCLCO  |d OCL  |d OCLCO  |d IDB  |d NRC  |d UAB  |d OCLCQ  |d WAU  |d OCLCO  |d CDX  |d OCLCQ  |d MERUC  |d DEGRU  |d MNW  |d BUF  |d UUM  |d WRM  |d GILDS  |d OCLCQ  |d MFS  |d AU@  |d OCLCQ  |d WYU  |d TKN  |d OCL  |d JSTOR  |d IEEEE  |d INARC  |d OCLCO  |d OCLCQ 
066 |c (S 
015 |a GBB567085  |2 bnb 
016 7 |a 017371935  |2 Uk 
019 |a 908632832  |a 911017821  |a 911019089  |a 984644222  |a 1285760197 
020 |a 9781400865697  |q (e-book) 
020 |a 1400865697  |q (e-book) 
020 |z 9780691161143  |q (hardcover ;  |q alk. paper) 
020 |z 0691161143  |q (hardcover ;  |q alk. paper) 
020 |z 9780691175690 
020 |z 0691175691 
024 7 |a 10.1515/9781400865697  |2 doi 
029 1 |a AU@  |b 000056093975 
029 1 |a DEBBG  |b BV042991452 
029 1 |a DEBBG  |b BV043619772 
029 1 |a DEBSZ  |b 453329799 
029 1 |a DEBSZ  |b 433526270 
029 1 |a AU@  |b 000067041098 
035 |a (OCoLC)909908463  |z (OCoLC)908632832  |z (OCoLC)911017821  |z (OCoLC)911019089  |z (OCoLC)984644222  |z (OCoLC)1285760197 
037 |a 778640  |b MIL 
037 |a 22573/ctvc668cp  |b JSTOR 
037 |a 9453325  |b IEEE 
050 4 |a QA300  |b .C4412 2015eb 
072 7 |a MAT  |x 039000  |2 bisacsh 
072 7 |a MAT  |x 023000  |2 bisacsh 
072 7 |a MAT  |x 026000  |2 bisacsh 
072 7 |a MAT  |x 000000  |2 bisacsh 
072 7 |a MAT  |x 006000  |2 bisacsh 
072 7 |a MAT  |x 021000  |2 bisacsh 
072 7 |a MAT  |x 022000  |2 bisacsh 
072 7 |a MAT  |x 041000  |2 bisacsh 
082 0 4 |a 510  |2 23 
049 |a UAMI 
100 1 |a Chamberland, Marc,  |d 1964-  |e author. 
245 1 0 |a Single digits :  |b in praise of small numbers /  |c Marc Chamberland. 
264 1 |a Princeton :  |b Princeton University Press,  |c [2015] 
264 4 |c ©2015 
300 |a 1 online resource (xii, 226 pages) :  |b illustrations, map. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 0 |a EBL-Schweitzer 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record. 
505 0 0 |t Frontmatter --  |t Contents --  |t Preface --  |t Chapter 1. The Number One --  |t Chapter 2. The Number Two --  |t Chapter 3. The Number Three --  |t Chapter 4. The Number Four --  |t Chapter 5. The Number Five --  |t Chapter 6. The Number Six --  |t Chapter 7. The Number Seven --  |t Chapter 8. The Number Eight --  |t Chapter 9. The Number Nine --  |t Chapter 10. Solutions --  |t Further reading --  |t Credits for illustrations --  |t Index. 
520 |a The numbers one through nine have remarkable mathematical properties and characteristics. For instance, why do eight perfect card shuffles leave a standard deck of cards unchanged? Are there really "six degrees of separation" between all pairs of people? And how can any map need only four colors to ensure that no regions of the same color touch? In Single Digits, Marc Chamberland takes readers on a fascinating exploration of small numbers, from one to nine, looking at their history, applications, and connections to various areas of mathematics, including number theory, geometry, chaos theory, numerical analysis, and mathematical physics. Each chapter focuses on a single digit, beginning with easy concepts that become more advanced as the chapter progresses. Chamberland covers vast numerical territory, such as illustrating the ways that the number three connects to chaos theory, an unsolved problem involving Egyptian fractions, the number of guards needed to protect an art gallery, and problematic election results. He considers the role of the number seven in matrix multiplication, the Transylvania lottery, synchronizing signals, and hearing the shape of a drum. Throughout, he introduces readers to an array of puzzles, such as perfect squares, the four hats problem, Strassen multiplication, Catalan's conjecture, and so much more. The book's short sections can be read independently and digested in bite-sized chunks--especially good for learning about the Ham Sandwich Theorem and the Pizza Theorem. Appealing to high school and college students, professional mathematicians, and those mesmerized by patterns, this book shows that single digits offer a plethora of possibilities that readers can count on. 
546 |a In English. 
590 |a JSTOR  |b Books at JSTOR Evidence Based Acquisitions 
590 |a JSTOR  |b Books at JSTOR All Purchased 
590 |a JSTOR  |b Books at JSTOR Demand Driven Acquisitions (DDA) 
650 0 |a Mathematical analysis. 
650 0 |a Sequences (Mathematics) 
650 0 |a Combinatorial analysis. 
650 0 |a Mathematics  |v Miscellanea. 
650 1 |a Sequences (Mathematics.) 
650 6 |a Analyse mathématique. 
650 6 |a Suites (Mathématiques) 
650 6 |a Analyse combinatoire. 
650 6 |a Mathématiques  |v Miscellanées. 
650 7 |a MATHEMATICS  |x Essays.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Pre-Calculus.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Reference.  |2 bisacsh 
650 7 |a MATHEMATICS / General  |2 bisacsh 
650 7 |a Combinatorial analysis.  |2 fast  |0 (OCoLC)fst00868961 
650 7 |a Mathematical analysis.  |2 fast  |0 (OCoLC)fst01012068 
650 7 |a Mathematics.  |2 fast  |0 (OCoLC)fst01012163 
650 7 |a Sequences (Mathematics)  |2 fast  |0 (OCoLC)fst01112884 
650 7 |a Mathematical analysis.  |2 nli 
650 7 |a Sequences (Mathematics)  |2 nli 
650 7 |a Combinatorial analysis.  |2 nli 
650 7 |a Mathematics  |v Miscellanea.  |2 nli 
655 7 |a miscellanies.  |2 aat 
655 7 |a Trivia and miscellanea  |2 fast  |0 (OCoLC)fst01921748 
655 7 |a Trivia and miscellanea.  |2 lcgft 
655 7 |a Miscellanées.  |2 rvmgf 
776 0 8 |i Print version:  |a Chamberland, Marc, 1964-  |t Single digits.  |d Princeton : Princeton University Press, [2015]  |z 9780691161143  |w (DLC) 2014047680  |w (OCoLC)894625314 
856 4 0 |u https://jstor.uam.elogim.com/stable/10.2307/j.ctvc779m9  |z Texto completo 
880 0 |6 505-00/(S  |a Cover -- Title -- Copyright -- contents -- PREFACE -- Chapter 1 The Number One -- Sliced Origami -- Fibonacci Numbers and the Golden Ratio -- Representing Numbers Uniquely -- Factoring Knots -- Counting and the Stern Sequence -- Fractals -- Gilbreath's Conjecture -- Benford's Law -- The Brouwer Fixed-Point Theorem -- Inverse Problems -- Perfect Squares -- The Bohr-Mollerup Theorem -- The Picard Theorems -- Chapter 2 The Number Two -- The Jordan Curve Theorem and Parity Arguments -- Aspect Ratio -- How Symmetric Are You-- The Pythagorean Theorem -- Beatty Sequences -- Euler's Formula -- Matters of Prime Importance -- The Ham Sandwich Theorem -- Power Sets and Powers of Two -- The Sylvester-Gallai Theorem -- Formulas for π -- Multiplication -- The Thue-Morse Sequence -- Duals -- Apollonian Circle Packings -- Perfect Numbers and Mersenne Primes -- Pythagorean Tuning and the Square Root of 2 -- Inverse Square Laws -- The Arithmetic-Geometric Mean Inequality -- Positive Polynomials -- Newton's Method for Root Finding -- More Division via Multiplication -- The Allure of π^2/6 -- Jacobian Conjectures -- Chapter 3 The Number Three -- The 3x + 1 Problem -- Triangular Numbers and Bulgarian Solitaire -- Rock-Paper-Scissors and Borromean Rings -- Random Walks -- Trisecting an Angle -- The Three-Body Problem -- The Lorenz Attractor and Chaos -- Period Three Implies Chaos -- Patterns among the Stars -- Fermat's Last Theorem -- Leftovers Anyone-- Egyptian Fractions -- Arrow's Impossibility Theorem -- Mapping Surfaces -- Guarding an Art Gallery -- The Poincaré Conjecture -- Monge's Three-Circle Theorem -- Marden's Theorem -- The Reuleaux Triangle -- The Third Critical Point -- Sums of Cubes -- Approximating Decay -- Chapter 4 The Number Four -- The Four Color Theorem -- The Tennis Ball Theorem -- Sum of Squares Identities -- Rearranging Four Pieces. 
938 |a Internet Archive  |b INAR  |n singledigitsinpr0000cham 
938 |a De Gruyter  |b DEGR  |n 9781400865697 
938 |a Coutts Information Services  |b COUT  |n 31383078 
938 |a YBP Library Services  |b YANK  |n 12407599 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis31383078 
938 |a EBSCOhost  |b EBSC  |n 971375 
938 |a ebrary  |b EBRY  |n ebr11050549 
994 |a 92  |b IZTAP