Cargando…

Data mining for the social sciences : an introduction /

"We live, today, in world of big data. The amount of information collected on human behavior every day is staggering, and exponentially greater than at any time in the past. At the same time, we are inundated by stories of powerful algorithms capable of churning through this sea of data and unc...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Attewell, Paul A., 1949- (Autor), Monaghan, David B., 1988- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Oakland, California : University of California Press, [2015]
Edición:First edition.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 JSTOR_ocn905221641
003 OCoLC
005 20231005004200.0
006 m o d
007 cr cnu---unuuu
008 150319t20152015cau ob 001 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d JSTOR  |d QGK  |d EBLCP  |d E7B  |d YDXCP  |d DEBSZ  |d K6U  |d COCUF  |d CNNOR  |d OCLCQ  |d CCO  |d PIFFA  |d FVL  |d ZCU  |d AGLDB  |d MERUC  |d OCLCQ  |d U3W  |d D6H  |d UUM  |d STF  |d VNS  |d OCLCQ  |d VTS  |d ICG  |d VT2  |d OCLCQ  |d WYU  |d G3B  |d LVT  |d TKN  |d DKC  |d OCLCQ  |d DEGRU  |d SFB  |d OCLCQ  |d MM9  |d OCLCQ  |d OCLCO  |d COM  |d LUU  |d OCLCQ 
019 |a 905988723  |a 959910162  |a 1055316528  |a 1066614218  |a 1081203914 
020 |a 9780520960596  |q (electronic bk.) 
020 |a 0520960599  |q (electronic bk.) 
020 |z 9780520280977 
020 |z 0520280970 
020 |z 9780520280984 
020 |z 0520280989 
029 1 |a AU@  |b 000054965494 
029 1 |a AU@  |b 000056081080 
029 1 |a DEBBG  |b BV044071937 
029 1 |a DEBSZ  |b 431858543 
029 1 |a DEBSZ  |b 493160361 
029 1 |a DKDLA  |b 820120-katalog:999942807705765 
029 1 |a NLGGC  |b 39176599X 
035 |a (OCoLC)905221641  |z (OCoLC)905988723  |z (OCoLC)959910162  |z (OCoLC)1055316528  |z (OCoLC)1066614218  |z (OCoLC)1081203914 
037 |a 22573/ctt13h1jg1  |b JSTOR 
050 4 |a H61.3  |b .A88 2015eb 
072 7 |a COM  |x 000000  |2 bisacsh 
072 7 |a SOC006000  |2 bisacsh 
082 0 4 |a 006.3/12  |2 23 
049 |a UAMI 
100 1 |a Attewell, Paul A.,  |d 1949-  |e author. 
245 1 0 |a Data mining for the social sciences :  |b an introduction /  |c Paul Attewell and David B. Monaghan, with Darren Kwong. 
250 |a First edition. 
264 1 |a Oakland, California :  |b University of California Press,  |c [2015] 
264 4 |c ©2015 
300 |a 1 online resource (xi, 252 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
520 |a "We live, today, in world of big data. The amount of information collected on human behavior every day is staggering, and exponentially greater than at any time in the past. At the same time, we are inundated by stories of powerful algorithms capable of churning through this sea of data and uncovering patterns. These techniques go by many names - data mining, predictive analytics, machine learning - and they are being used by governments as they spy on citizens and by huge corporations are they fine-tune their advertising strategies. And yet social scientists continue mainly to employ a set of analytical tools developed in an earlier era when data was sparse and difficult to come by. In this timely book, Paul Attewell and David Monaghan provide a simple and accessible introduction to Data Mining geared towards social scientists. They discuss how the data mining approach differs substantially, and in some ways radically, from that of conventional statistical modeling familiar to most social scientists. They demystify data mining, describing the diverse set of techniques that the term covers and discussing the strengths and weaknesses of the various approaches. Finally they give practical demonstrations of how to carry out analyses using data mining tools in a number of statistical software packages. It is the hope of the authors that this book will empower social scientists to consider incorporating data mining methodologies in their analytical toolkits"--Provided by publisher 
588 0 |a Online resource; title from PDF title page (Ebsco, viewed June 15, 2015). 
505 0 |a Cover; Title; Copyright; Contents; Acknowledgments; PART 1. CONCEPTS; 1. What Is Data Mining?; The Goals of This Book; Software and Hardware for Data Mining; Basic Terminology; 2. Contrasts with the Conventional Statistical Approach; Predictive Power in Conventional Statistical Modeling; Hypothesis Testing in the Conventional Approach; Heteroscedasticity as a Threat to Validity in Conventional Modeling; The Challenge of Complex and Nonrandom Samples; Bootstrapping and Permutation Tests; Nonlinearity in Conventional Predictive Models; Statistical Interactions in Conventional Models; Conclusion. 
505 8 |a 3. Some General Strategies Used in Data MiningCross-Validation; Overfitting; Boosting; Calibrating; Measuring Fit: The Confusion Matrix and ROC Curves; Identifying Statistical Interactions and Effect Heterogeneity in Data Mining; Bagging and Random Forests; The Limits of Prediction; Big Data Is Never Big Enough; 4. Important Stages in a Data Mining Project; When to Sample Big Data; Building a Rich Array of Features; Feature Selection; Feature Extraction; Constructing a Model; PART 2. WORKED EXAMPLES; 5. Preparing Training and Test Datasets ; The Logic of Cross-Validation. 
505 8 |a Cross-Validation Methods: An Overview6. Variable Selection Tools; Stepwise Regression; The LASSO; VIF Regression; 7. Creating New Variables Using Binning and Trees; Discretizing a Continuous Predictor; Continuous Outcomes and Continuous Predictors; Binning Categorical Predictors; Using Partition Trees to Study Interactions; 8. Extracting Variables; Principal Component Analysis; Independent Component Analysis; 9. Classifiers; K-Nearest Neighbors; Naive Bayes; Support Vector Machines; Optimizing Prediction across Multiple Classifiers; 10. Classification Trees; Partition Trees. 
505 8 |a Boosted Trees and Random Forests 11. Neural Networks; 12. Clustering; Hierarchical Clustering; K-Means Clustering; Normal Mixtures; Self-Organized Maps; 13. Latent Class Analysis and Mixture Models; Latent Class Analysis; Latent Class Regression; Mixture Models; 14. Association Rules; Conclusion; Bibliography; Notes; Index; A; B; C; D; E; F; G; H; I; J; K; L; M; N; O; P; R; S; T; U; V; W; X; Y; Z. 
590 |a JSTOR  |b Books at JSTOR Demand Driven Acquisitions (DDA) 
590 |a JSTOR  |b Books at JSTOR Evidence Based Acquisitions 
590 |a JSTOR  |b Books at JSTOR All Purchased 
650 0 |a Social sciences  |x Data processing. 
650 0 |a Social sciences  |x Statistical methods. 
650 0 |a Data mining. 
650 2 |a Data Mining 
650 6 |a Sciences sociales  |x Informatique. 
650 6 |a Sciences sociales  |x Méthodes statistiques. 
650 6 |a Exploration de données (Informatique) 
650 7 |a COMPUTERS  |x General.  |2 bisacsh 
650 7 |a SOCIAL SCIENCE  |x Demography.  |2 bisacsh 
650 7 |a Data mining.  |2 fast  |0 (OCoLC)fst00887946 
650 7 |a Social sciences  |x Data processing.  |2 fast  |0 (OCoLC)fst01122901 
650 7 |a Social sciences  |x Statistical methods.  |2 fast  |0 (OCoLC)fst01122983 
700 1 |a Monaghan, David B.,  |d 1988-  |e author. 
700 1 |a Kwong, Darren,  |e writer of supplementary textual content. 
776 0 8 |i Print version:  |a Attewell, Paul A., 1949-  |t Data mining for the social sciences.  |b First edition  |z 9780520280977  |w (DLC) 2014035276  |w (OCoLC)894491465 
856 4 0 |u https://jstor.uam.elogim.com/stable/10.1525/j.ctt13x1gcg  |z Texto completo 
938 |a De Gruyter  |b DEGR  |n 9780520960596 
938 |a EBL - Ebook Library  |b EBLB  |n EBL1882080 
938 |a ebrary  |b EBRY  |n ebr11033069 
938 |a EBSCOhost  |b EBSC  |n 967323 
938 |a YBP Library Services  |b YANK  |n 12344891 
994 |a 92  |b IZTAP