|
|
|
|
LEADER |
00000cam a2200000 4500 |
001 |
JSTOR_ocn902958227 |
003 |
OCoLC |
005 |
20231005004200.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
150207s2015 nju o 000 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|e pn
|c EBLCP
|d OCLCO
|d IDEBK
|d DEBSZ
|d JSTOR
|d DEBBG
|d OCLCF
|d N$T
|d YDXCP
|d OCLCQ
|d IDB
|d AGLDB
|d OCLCQ
|d CUY
|d IOG
|d DEGRU
|d EZ9
|d STF
|d OCLCQ
|d VTS
|d OCLCQ
|d LVT
|d LEAUB
|d DKC
|d OCLCQ
|d M8D
|d OCLCQ
|d AJS
|d OCLCO
|d OCLCQ
|
066 |
|
|
|c (S
|
019 |
|
|
|a 979727834
|a 992933491
|
020 |
|
|
|a 9781400868421
|q (electronic bk.)
|
020 |
|
|
|a 1400868424
|q (electronic bk.)
|
024 |
7 |
|
|a 10.1515/9781400868421
|2 doi
|
029 |
1 |
|
|a DEBBG
|b BV042693656
|
029 |
1 |
|
|a DEBBG
|b BV042988269
|
029 |
1 |
|
|a DEBSZ
|b 428543499
|
029 |
1 |
|
|a DEBSZ
|b 447055240
|
029 |
1 |
|
|a DEBSZ
|b 493157271
|
029 |
1 |
|
|a CHVBK
|b 49885227X
|
029 |
1 |
|
|a CHBIS
|b 011057862
|
029 |
1 |
|
|a GBVCP
|b 1003803032
|
029 |
1 |
|
|a AU@
|b 000056068673
|
035 |
|
|
|a (OCoLC)902958227
|z (OCoLC)979727834
|z (OCoLC)992933491
|
037 |
|
|
|a 22573/ctt13gm448
|b JSTOR
|
050 |
|
4 |
|a QC174.85.L38 I87
|
072 |
|
7 |
|a SCI055000
|2 bisacsh
|
072 |
|
7 |
|a SCI
|x 024000
|2 bisacsh
|
072 |
|
7 |
|a SCI
|x 041000
|2 bisacsh
|
072 |
|
7 |
|a SCI
|x 055000
|2 bisacsh
|
082 |
0 |
4 |
|a 530.13
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Israel, Robert B.
|
245 |
1 |
0 |
|a Convexity in the Theory of Lattice Gases.
|
260 |
|
|
|a Princeton :
|b Princeton University Press,
|c 2015.
|
300 |
|
|
|a 1 online resource (257 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|b PDF
|
347 |
|
|
|a text file
|
490 |
1 |
|
|a Princeton Series in Physics
|
588 |
0 |
|
|a Print version record.
|
500 |
|
|
|a Contents.
|
520 |
|
|
|a In this book, Robert Israel considers classical and quantum lattice systems in terms of equilibrium statistical mechanics. He is especially concerned with the characterization of translation-invariant equilibrium states by a variational principle and the use of convexity in studying these states. Arthur Wightman's Introduction gives a general and historical perspective on convexity in statistical mechanics and thermodynamics. Professor Israel then reviews the general framework of the theory of lattice gases. In addition to presenting new and more direct proofs of some known results, he uses.
|
505 |
0 |
0 |
|t Frontmatter --
|t CONTENTS --
|t INTRODUCTION. Convexity and the Notion of Equilibrium State in Thermodynamics and Statistical Mechanics --
|t I. Interactions --
|t II. Tangent Functionals and the Variational Principle --
|t III. DLR Equations and KMS Conditions --
|t IV. Decomposition of States --
|t V. Approximation by Tangent Functionals: Existence of Phase Transitions --
|t VI. The Gibbs Phase Rule --
|t APPENDIX [Alpha]. Hausdorff Measure and Dimension --
|t APPENDIX B. Classical Hard-Core Continuous Systems --
|t BIBLIOGRAPHY --
|t INDEX --
|t Backmatter.
|
546 |
|
|
|a In English.
|
590 |
|
|
|a JSTOR
|b Books at JSTOR All Purchased
|
590 |
|
|
|a JSTOR
|b Books at JSTOR Demand Driven Acquisitions (DDA)
|
590 |
|
|
|a JSTOR
|b Books at JSTOR Evidence Based Acquisitions
|
650 |
|
0 |
|a Lattice gas.
|
650 |
|
0 |
|a Convex domains.
|
650 |
|
0 |
|a Statistical mechanics.
|
650 |
|
0 |
|a Statistical thermodynamics.
|
650 |
|
4 |
|a Natural Sciences.
|
650 |
|
4 |
|a Physics, other.
|
650 |
|
4 |
|a Physics.
|
650 |
|
4 |
|a Physik.
|
650 |
|
6 |
|a Gaz réticulaires.
|
650 |
|
6 |
|a Algèbres convexes.
|
650 |
|
6 |
|a Mécanique statistique.
|
650 |
|
6 |
|a Thermodynamique statistique.
|
650 |
|
7 |
|a SCIENCE
|x Physics
|x General.
|2 bisacsh
|
650 |
|
7 |
|a SCIENCE
|x Energy.
|2 bisacsh
|
650 |
|
7 |
|a SCIENCE
|x Mechanics
|x General.
|2 bisacsh
|
650 |
|
7 |
|a Convex domains.
|2 fast
|0 (OCoLC)fst00877259
|
650 |
|
7 |
|a Lattice gas.
|2 fast
|0 (OCoLC)fst00993419
|
650 |
|
7 |
|a Statistical mechanics.
|2 fast
|0 (OCoLC)fst01132070
|
650 |
|
7 |
|a Statistical thermodynamics.
|2 fast
|0 (OCoLC)fst01132092
|
776 |
0 |
8 |
|i Print version:
|a Israel, Robert B.
|t Convexity in the Theory of Lattice Gases.
|d Princeton : Princeton University Press, ©2015
|
830 |
|
0 |
|a Princeton series in physics.
|
856 |
4 |
0 |
|u https://jstor.uam.elogim.com/stable/10.2307/j.ctt13x1c8g
|z Texto completo
|
880 |
0 |
0 |
|6 505-00/(S
|t Frontmatter --
|t CONTENTS --
|t INTRODUCTION. Convexity and the Notion of Equilibrium State in Thermodynamics and Statistical Mechanics --
|t I. Interactions --
|t II. Tangent Functionals and the Variational Principle --
|t III. DLR Equations and KMS Conditions --
|t IV. Decomposition of States --
|t V. Approximation by Tangent Functionals: Existence of Phase Transitions --
|t VI. The Gibbs Phase Rule --
|t APPENDIX Α. Hausdorff Measure and Dimension --
|t APPENDIX B. Classical Hard-Core Continuous Systems --
|t BIBLIOGRAPHY --
|t INDEX --
|t Backmatter.
|
936 |
|
|
|a BATCHLOAD
|
938 |
|
|
|a De Gruyter
|b DEGR
|n 9781400868421
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 12283920
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n cis30589919
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 946717
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL1937615
|
994 |
|
|
|a 92
|b IZTAP
|