Cargando…

Euler systems /

One of the most exciting new subjects in Algebraic Number Theory and Arithmetic Algebraic Geometry is the theory of Euler systems. Euler systems are special collections of cohomology classes attached to p-adic Galois representations. Introduced by Victor Kolyvagin in the late 1980s in order to bound...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Rubin, Karl (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton, New Jersey ; Chichester, England : Princeton University Press, 2000.
Colección:Annals of mathematics studies ; no. 147.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Frontmatter
  • Contents
  • Acknowledgments / Rubin, Karl
  • Introduction
  • Chapter 1. Galois Cohomology of p-adic Representations
  • Chapter 2. Euler Systems: Definition and Main Results
  • Chapter 3. Examples and Applications
  • Chapter 4. Derived Cohomology Classes
  • Chapter 5. Bounding the Selmer Group
  • Chapter 6. Twisting
  • Chapter 7. Iwasawa Theory
  • Chapter 8. Euler Systems and p-adic L-functions
  • Chapter 9. Variants
  • Appendix A. Linear Algebra
  • Appendix B. Continuous Cohomology and Inverse Limits
  • Appendix C. Cohomology of p-adic Analytic Groups
  • Appendix D. p-adic Calculations in Cyclotomic Fields
  • Bibliography
  • Index of Symbols
  • Subject Index.