Cargando…

Algebraic curves over a finite field /

This book provides an accessible and self-contained introduction to the theory of algebraic curves over a finite field, a subject that has been of fundamental importance to mathematics for many years and that has essential applications in areas such as finite geometry, number theory, error-correctin...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Hirschfeld, J. W. P. (James William Peter), 1940- (Autor), Korchmáros, G. (Autor), Torres, F. (Fernando) (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton, New Jersey : Princeton University Press, 2008.
Colección:Princeton series in applied mathematics.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 JSTOR_ocn889240929
003 OCoLC
005 20231005004200.0
006 m o d
007 cr cn|||||||||
008 140813t20082008nju ob 001 0 eng d
040 |a E7B  |b eng  |e rda  |e pn  |c E7B  |d OCLCO  |d YDXCP  |d IDEBK  |d OCLCF  |d EBLCP  |d N$T  |d DEBSZ  |d JSTOR  |d DEBBG  |d OCLCQ  |d OCL  |d COO  |d OCLCQ  |d JBG  |d UIU  |d AGLDB  |d MOR  |d PIFAG  |d ZCU  |d MERUC  |d OCLCQ  |d IOG  |d DEGRU  |d U3W  |d EZ9  |d STF  |d OCLCQ  |d VTS  |d NRAMU  |d CRU  |d ICG  |d OCLCQ  |d INT  |d VT2  |d OCLCQ  |d WYU  |d LVT  |d TKN  |d OCLCQ  |d LEAUB  |d DKC  |d OCLCQ  |d AUD  |d BRF  |d AJS  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 884645547  |a 885020330  |a 894731974  |a 961577163  |a 962610703  |a 979727067 
020 |a 9781400847419  |q (e-book) 
020 |a 1400847419  |q (e-book) 
020 |a 1306988608 
020 |a 9781306988605 
020 |a 9781400847426 
020 |a 1400847427 
020 |a 0691096791 
020 |a 9780691096797 
020 |z 9780691096797 
024 7 |a 10.1515/9781400847419  |2 doi 
029 1 |a AU@  |b 000056009543 
029 1 |a CHBIS  |b 010896043 
029 1 |a CHVBK  |b 48339226X 
029 1 |a DEBBG  |b BV042693436 
029 1 |a DEBBG  |b BV043068802 
029 1 |a DEBBG  |b BV043782084 
029 1 |a DEBBG  |b BV044062542 
029 1 |a DEBSZ  |b 415418631 
029 1 |a DEBSZ  |b 423650602 
029 1 |a DEBSZ  |b 44598645X 
029 1 |a DEBSZ  |b 447051296 
029 1 |a DEBSZ  |b 477984444 
029 1 |a DKDLA  |b 820120-katalog:999932652605765 
029 1 |a GBVCP  |b 100378013X 
035 |a (OCoLC)889240929  |z (OCoLC)884645547  |z (OCoLC)885020330  |z (OCoLC)894731974  |z (OCoLC)961577163  |z (OCoLC)962610703  |z (OCoLC)979727067 
037 |a 630111  |b MIL 
050 4 |a QA565  |b .H577 2008eb 
072 7 |a MAT  |x 012000  |2 bisacsh 
072 7 |a MAT002010  |2 bisacsh 
072 7 |a MAT003000  |2 bisacsh 
082 0 4 |a 516.352  |2 23 
084 |a SK 240  |2 rvk 
049 |a UAMI 
100 1 |a Hirschfeld, J. W. P.  |q (James William Peter),  |d 1940-  |e author. 
245 1 0 |a Algebraic curves over a finite field /  |c J.W.P. Hirschfeld, G. Korchmaros, F. Torres. 
264 1 |a Princeton, New Jersey :  |b Princeton University Press,  |c 2008. 
264 4 |c ©2008 
300 |a 1 online resource (717 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
347 |b PDF 
490 1 |a Princeton Series in Applied Mathematics 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record. 
505 0 |a Cover; Title; Copyright; Dedication; Contents; Preface; PART 1. GENERAL THEORY OF CURVES; Chapter 1. Fundamental ideas; 1.1 Basic definitions; 1.2 Polynomials; 1.3 Affine plane curves; 1.4 Projective plane curves; 1.5 The Hessian curve; 1.6 Projective varieties in higher-dimensional spaces; 1.7 Exercises; 1.8 Notes; Chapter 2. Elimination theory; 2.1 Elimination of one unknown; 2.2 The discriminant; 2.3 Elimination in a system in two unknowns; 2.4 Exercises; 2.5 Notes; Chapter 3. Singular points and intersections; 3.1 The intersection number of two curves; 3.2 Bézout's Theorem. 
505 8 |a 3.3 Rational and birational transformations3.4 Quadratic transformations; 3.5 Resolution of singularities; 3.6 Exercises; 3.7 Notes; Chapter 4. Branches and parametrisation; 4.1 Formal power series; 4.2 Branch representations; 4.3 Branches of plane algebraic curves; 4.4 Local quadratic transformations; 4.5 Noether's Theorem; 4.6 Analytic branches; 4.7 Exercises; 4.8 Notes; Chapter 5. The function field of a curve; 5.1 Generic points; 5.2 Rational transformations; 5.3 Places; 5.4 Zeros and poles; 5.5 Separability and inseparability; 5.6 Frobenius rational transformations. 
505 8 |a 5.7 Derivations and differentials5.8 The genus of a curve; 5.9 Residues of differential forms; 5.10 Higher derivatives in positive characteristic; 5.11 The dual and bidual of a curve; 5.12 Exercises; 5.13 Notes; Chapter 6. Linear series and the Riemann-Roch Theorem; 6.1 Divisors and linear series; 6.2 Linear systems of curves; 6.3 Special and non-special linear series; 6.4 Reformulation of the Riemann-Roch Theorem; 6.5 Some consequences of the Riemann-Roch Theorem; 6.6 The Weierstrass Gap Theorem; 6.7 The structure of the divisor class group; 6.8 Exercises; 6.9 Notes. 
505 8 |a Chapter 7. Algebraic curves in higher-dimensional spaces7.1 Basic definitions and properties; 7.2 Rational transformations; 7.3 Hurwitz's Theorem; 7.4 Linear series composed of an involution; 7.5 The canonical curve; 7.6 Osculating hyperplanes and ramification divisors; 7.7 Non-classical curves and linear systems of lines; 7.8 Non-classical curves and linear systems of conics; 7.9 Dual curves of space curves; 7.10 Complete linear series of small order; 7.11 Examples of curves; 7.12 The Linear General Position Principle; 7.13 Castelnuovo's Bound; 7.14 A generalisation of Clifford's Theorem. 
505 8 |a 7.15 The Uniform Position Principle7.16 Valuation rings; 7.17 Curves as algebraic varieties of dimension one; 7.18 Exercises; 7.19 Notes; PART 2. CURVES OVER A FINITE FIELD; Chapter 8. Rational points and places over a finite field; 8.1 Plane curves defined over a finite field; 8.2 Fq-rational branches of a curve; 8.3 Fq-rational places, divisors and linear series; 8.4 Space curves over Fq; 8.5 The Stöhr-Voloch Theorem; 8.6 Frobenius classicality with respect to lines; 8.7 Frobenius classicality with respect to conics; 8.8 The dual of a Frobenius non-classical curve; 8.9 Exercises; 8.10 Notes. 
520 |a This book provides an accessible and self-contained introduction to the theory of algebraic curves over a finite field, a subject that has been of fundamental importance to mathematics for many years and that has essential applications in areas such as finite geometry, number theory, error-correcting codes, and cryptology. Unlike other books, this one emphasizes the algebraic geometry rather than the function field approach to algebraic curves. The authors begin by developing the general theory of curves over any field, highlighting peculiarities occurring for positive characteristi. 
546 |a In English. 
590 |a JSTOR  |b Books at JSTOR All Purchased 
590 |a JSTOR  |b Books at JSTOR Evidence Based Acquisitions 
590 |a JSTOR  |b Books at JSTOR Demand Driven Acquisitions (DDA) 
650 0 |a Curves, Algebraic. 
650 0 |a Finite fields (Algebra) 
650 6 |a Courbes algébriques. 
650 6 |a Corps finis. 
650 7 |a MATHEMATICS  |x Geometry  |x General.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Algebra  |x Abstract.  |2 bisacsh 
650 7 |a Curves, Algebraic  |2 fast 
650 7 |a Finite fields (Algebra)  |2 fast 
650 7 |a Galois-Feld  |2 gnd 
650 7 |a Algebraische Kurve  |2 gnd 
700 1 |a Korchmáros, G.,  |e author. 
700 1 |a Torres, F.  |q (Fernando),  |e author. 
776 0 8 |i Print version:  |a Hirschfeld, J.W.P. (James William Peter), 1940-  |t Algebraic curves over a finite field.  |d Princeton, New Jersey : Princeton University Press, ©2008  |h xx, 696 pages  |k Princeton series in applied mathematics.  |z 9780691096797 
830 0 |a Princeton series in applied mathematics. 
856 4 0 |u https://jstor.uam.elogim.com/stable/10.2307/j.ctt1287kdw  |z Texto completo 
936 |a BATCHLOAD 
938 |a De Gruyter  |b DEGR  |n 9781400847419 
938 |a EBL - Ebook Library  |b EBLB  |n EBL1138042 
938 |a ebrary  |b EBRY  |n ebr10901634 
938 |a EBSCOhost  |b EBSC  |n 816476 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis28704511 
938 |a YBP Library Services  |b YANK  |n 11999711 
994 |a 92  |b IZTAP