Cargando…

Markov Processes from K. Ito''s Perspective (AM-155).

Kiyosi Itô's greatest contribution to probability theory may be his introduction of stochastic differential equations to explain the Kolmogorov-Feller theory of Markov processes. Starting with the geometric ideas that guided him, this book gives an account of Itô's program. The modern th...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Stroock, Daniel W.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton : Princeton University Press, 2003.
Colección:Annals of mathematics studies.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 4500
001 JSTOR_ocn888749095
003 OCoLC
005 20231005004200.0
006 m o d
007 cr cnu---unuuu
008 140823s2003 nju o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d OCLCO  |d N$T  |d DEBSZ  |d OCLCQ  |d OCLCO  |d JSTOR  |d OCLCF  |d YDXCP  |d OCLCQ  |d COO  |d DEBBG  |d OCLCQ  |d UIU  |d ZCU  |d XFH  |d JBG  |d MERUC  |d OCLCQ  |d IOG  |d DEGRU  |d EZ9  |d OCLCQ  |d VTS  |d ICG  |d AU@  |d OCLCQ  |d LVT  |d STF  |d LEAUB  |d DKC  |d OCLCQ  |d M8D  |d OCLCQ  |d U9X  |d AUD  |d BRF  |d AJS  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCQ 
066 |c (S 
019 |a 979579163  |a 992848526  |a 994596306 
020 |a 9781400835577  |q (electronic bk.) 
020 |a 1400835577  |q (electronic bk.) 
020 |a 1322063230 
020 |a 9781322063232 
020 |a 0691115435 
020 |a 9780691115436 
024 7 |a 10.1515/9781400835577  |2 doi 
029 1 |a CHBIS  |b 010896022 
029 1 |a CHVBK  |b 483392014 
029 1 |a DEBBG  |b BV043122517 
029 1 |a DEBBG  |b BV043713072 
029 1 |a DEBBG  |b BV044070022 
029 1 |a DEBSZ  |b 41392761X 
029 1 |a DEBSZ  |b 429947291 
029 1 |a DEBSZ  |b 445558148 
029 1 |a DEBSZ  |b 47827582X 
029 1 |a GBVCP  |b 1003780040 
029 1 |a AU@  |b 000056009304 
029 1 |a DKDLA  |b 820120-katalog:999933311905765 
035 |a (OCoLC)888749095  |z (OCoLC)979579163  |z (OCoLC)992848526  |z (OCoLC)994596306 
037 |a 22573/ctt7hc2fr  |b JSTOR 
050 4 |a QA274.7 .S77 2003 
072 7 |a MAT  |x 003000  |2 bisacsh 
072 7 |a MAT  |x 029000  |2 bisacsh 
072 7 |a MAT029040  |2 bisacsh 
082 0 4 |a 519.233 
084 |a SI 830  |2 rvk 
049 |a UAMI 
100 1 |a Stroock, Daniel W. 
245 1 0 |a Markov Processes from K. Ito''s Perspective (AM-155). 
260 |a Princeton :  |b Princeton University Press,  |c 2003. 
300 |a 1 online resource (289 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |b PDF 
347 |a text file 
490 1 |a Annals of Mathematics Studies 
588 0 |a Print version record. 
505 0 0 |6 880-01  |t Frontmatter --  |t Contents --  |t Preface --  |t Chapter 1. Finite State Space, a Trial Run --  |t Chapter 2. Moving to Euclidean Space, the Real Thing --  |t Chapter 3. Itô's Approach in the Euclidean Setting --  |t Chapter 4. Further Considerations --  |t Chapter 5. Itô's Theory of Stochastic Integration --  |t Chapter 6. Applications of Stochastic Integration to Brownian Motion --  |t Chapter 7. The Kunita-Watanabe Extension --  |t Chapter 8. Stratonovich's Theory --  |t Notation --  |t References --  |t Index. 
520 |a Kiyosi Itô's greatest contribution to probability theory may be his introduction of stochastic differential equations to explain the Kolmogorov-Feller theory of Markov processes. Starting with the geometric ideas that guided him, this book gives an account of Itô's program. The modern theory of Markov processes was initiated by A.N. Kolmogorov. However, Kolmogorov's approach was too analytic to reveal the probabilistic foundations on which it rests. In particular, it hides the central role played by the simplest Markov processes: those with independent, identically distributed increments. To remedy this defect, Itô interpreted Kolmogorov's famous forward equation as an equation that describes the integral curve of a vector field on the space of probability measures. Thus, in order to show how Itô's thinking leads to his theory of stochastic integral equations, Stroock begins with an account of integral curves on the space of probability measures and then arrives at stochastic integral equations when he moves to a pathspace setting. In the first half of the book, everything is done in the context of general independent increment processes and without explicit use of Itô's stochastic integral calculus. In the second half, the author provides a systematic development of Itô's theory of stochastic integration: first for Brownian motion and then for continuous martingales. The final chapter presents Stratonovich's variation on Itô's theme and ends with an application to the characterization of the paths on which a diffusion is supported. The book should be accessible to readers who have mastered the essentials of modern probability theory and should provide such readers with a reasonably thorough introduction to continuous-time, stochastic processes. 
546 |a In English. 
590 |a JSTOR  |b Books at JSTOR Demand Driven Acquisitions (DDA) 
590 |a JSTOR  |b Books at JSTOR Evidence Based Acquisitions 
590 |a JSTOR  |b Books at JSTOR All Purchased 
650 0 |a Markov processes. 
650 0 |a Stochastic integrals. 
650 2 |a Markov Chains 
650 4 |a Mathematics. 
650 4 |a Physical Sciences & Mathematics. 
650 4 |a Mathematical Statistics. 
650 6 |a Processus de Markov. 
650 6 |a Intégrales stochastiques. 
650 7 |a MATHEMATICS  |x Applied.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Probability & Statistics  |x General.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Probability & Statistics  |x Stochastic Processes.  |2 bisacsh 
650 7 |a Markov processes.  |2 fast  |0 (OCoLC)fst01010347 
650 7 |a Stochastic integrals.  |2 fast  |0 (OCoLC)fst01133512 
650 7 |a Markov-Prozess  |2 gnd 
776 0 8 |i Print version:  |a Stroock, Daniel W.  |t Markov Processes from K. Ito''s Perspective (AM-155).  |d Princeton : Princeton University Press, ©2003  |z 9780691115436 
830 0 |a Annals of mathematics studies. 
856 4 0 |u https://jstor.uam.elogim.com/stable/10.2307/j.ctt7zvdpb  |z Texto completo 
880 0 |6 505-00/(S  |a Cover; Title; Copyright; Dedication; Contents; Preface; Chapter 1 Finite State Space, a Trial Run; 1.1 An Extrinsic Perspective; 1.1.1. The Structure of Θn; 1.1.2. Back to M1(Zn); 1.2 A More Intrinsic Approach; 1.2.1. The Semigroup Structure on M1(Zn); 1.2.2. Infinitely Divisible Flows; 1.2.3. An Intrinsic Description of Tδx (M1(Zn)); 1.2.4. An Intrinsic Approach to (1.1.6); 1.2.5. Exercises; 1.3 Vector Fields and Integral Curves on M1(Zn); 1.3.1. Affine and Translation Invariant Vector Fields; 1.3.2. Existence of an Integral Curve; 1.3.3. Uniqueness for Affine Vector Fields. 
880 8 |6 505-01/(S  |a 1.3.4. The Markov Property and Kolmogorov''s Equations1.3.5. Exercises; 1.4 Pathspace Realization; 1.4.1. Kolmogorov''s Approach; 1.4.2. Lévy Processes on Zn; 1.4.3. Exercises; 1.5 Itô''s Idea; 1.5.1. Itô''s Construction; 1.5.2. Exercises; 1.6 Another Approach; 1.6.1. Itô''s Approximation Scheme; 1.6.2. Exercises; Chapter 2 Moving to Euclidean Space, the Real Thing; 2.1 Tangent Vectors to M1(R^n); 2.1.1. Differentiable Curves on M1(R^n); 2.1.2. Infinitely Divisible Flows on M1(R^n); 2.1.3. The Tangent Space at δx; 2.1.4. The Tangent Space at General μ ∈ M1(R^n); 2.1.5. Exercises. 
936 |a BATCHLOAD 
938 |a YBP Library Services  |b YANK  |n 12040784 
938 |a EBSCOhost  |b EBSC  |n 831766 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL1769088 
938 |a De Gruyter  |b DEGR  |n 9781400835577 
994 |a 92  |b IZTAP