Cargando…

Genomic Signal Processing.

Genomic signal processing (GSP) can be defined as the analysis, processing, and use of genomic signals to gain biological knowledge, and the translation of that knowledge into systems-based applications that can be used to diagnose and treat genetic diseases. Situated at the crossroads of engineerin...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Shmulevich, Ilya
Otros Autores: Dougherty, Edward R.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton : Princeton University Press, 2014.
Colección:Princeton series in applied mathematics.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 4500
001 JSTOR_ocn888743988
003 OCoLC
005 20231005004200.0
006 m o d
007 cr cnu---unuuu
008 140823s2014 nju o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d OCLCO  |d N$T  |d YDXCP  |d DEBSZ  |d DEBBG  |d JSTOR  |d OCLCF  |d OCLCQ  |d OCLCO  |d COO  |d OCLCQ  |d UIU  |d AGLDB  |d ZCU  |d MERUC  |d OCLCQ  |d IOG  |d VTS  |d EZ9  |d ICG  |d OCLCQ  |d LVT  |d STF  |d DKC  |d OCLCQ  |d M8D  |d OCLCQ  |d AJS  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 1264795438  |a 1267427970 
020 |a 9781400865260  |q (electronic bk.) 
020 |a 1400865263  |q (electronic bk.) 
024 7 |a 10.1515/9781400865260  |2 doi 
029 1 |a AU@  |b 000056008806 
029 1 |a AU@  |b 000069838215 
029 1 |a CHBIS  |b 010896061 
029 1 |a CHVBK  |b 483382795 
029 1 |a DEBBG  |b BV042524180 
029 1 |a DEBBG  |b BV043112812 
029 1 |a DEBBG  |b BV044069704 
029 1 |a DEBSZ  |b 415193672 
029 1 |a DEBSZ  |b 429956037 
029 1 |a DEBSZ  |b 445582855 
029 1 |a DEBSZ  |b 446779865 
029 1 |a GBVCP  |b 100377993X 
035 |a (OCoLC)888743988  |z (OCoLC)1264795438  |z (OCoLC)1267427970 
037 |a 22573/ctt767z3h  |b JSTOR 
050 4 |a QP517.C45 S49 2014 
072 7 |a SCI  |x 007000  |2 bisacsh 
072 7 |a MAT003000  |2 bisacsh 
072 7 |a SCI029000  |2 bisacsh 
072 7 |a MED107000  |2 bisacsh 
082 0 4 |a 572.865 
049 |a UAMI 
100 1 |a Shmulevich, Ilya. 
245 1 0 |a Genomic Signal Processing. 
260 |a Princeton :  |b Princeton University Press,  |c 2014. 
300 |a 1 online resource (314 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Princeton Series in Applied Mathematics 
588 0 |a Print version record. 
505 0 |a Cover; Title; Copyright; Contents; Preface; 1 Biological Foundations; 1.1 Genetics; 1.1.1 Nucleic Acid Structure; 1.1.2 Genes; 1.1.3 RNA; 1.1.4 Transcription; 1.1.5 Proteins; 1.1.6 Translation; 1.1.7 Transcriptional Regulation; 1.2 Genomics; 1.2.1 Microarray Technology; 1.3 Proteomics; Bibliography; 2 Deterministic Models of Gene Networks; 2.1 Graph Models; 2.2 Boolean Networks; 2.2.1 Cell Differentiation and Cellular Functional States; 2.2.2 Network Properties and Dynamics; 2.2.3 Network Inference; 2.3 Generalizations of Boolean Networks; 2.3.1 Asynchrony; 2.3.2 Multivalued Networks. 
505 8 |a 2.4 Differential Equation Models2.4.1 A Differential Equation Model Incorporating Transcription and Translation; 2.4.2 Discretization of the Continuous Differential Equation Model; Bibliography; 3 Stochastic Models of Gene Networks; 3.1 Bayesian Networks; 3.2 Probabilistic Boolean Networks; 3.2.1 Definitions; 3.2.2 Inference; 3.2.3 Dynamics of PBNs; 3.2.4 Steady-State Analysis of Instantaneously Random PBNs ; 3.2.5 Relationships of PBNs to Bayesian Networks; 3.2.6 Growing Subnetworks from Seed Genes; 3.3 Intervention; 3.3.1 Gene Intervention; 3.3.2 Structural Intervention. 
505 8 |a 3.3.3 External ControlBibliography; 4 Classification; 4.1 Bayes Classifier; 4.2 Classification Rules; 4.2.1 Consistent Classifier Design; 4.2.2 Examples of Classification Rules; 4.3 Constrained Classifiers; 4.3.1 Shatter Coefficient; 4.3.2 VC Dimension; 4.4 Linear Classification; 4.4.1 Rosenblatt Perceptron; 4.4.2 Linear and Quadratic Discriminant Analysis; 4.4.3 Linear Discriminants Based on Least-Squares Error; 4.4.4 Support Vector Machines; 4.4.5 Representation of Design Error for Linear Discriminant Analysis; 4.4.6 Distribution of the QDA Sample-Based Discriminant. 
505 8 |a 4.5 Neural Networks Classifiers4.6 Classification Trees; 4.6.1 Classification and Regression Trees; 4.6.2 Strongly Consistent Rules for Data-Dependent Partitioning; 4.7 Error Estimation; 4.7.1 Resubstitution; 4.7.2 Cross-validation; 4.7.3 Bootstrap; 4.7.4 Bolstering; 4.7.5 Error Estimator Performance; 4.7.6 Feature Set Ranking; 4.8 Error Correction; 4.9 Robust Classifiers; 4.9.1 Optimal Robust Classifiers; 4.9.2 Performance Comparison for Robust Classifiers; Bibliography; 5 Regularization; 5.1 Data Regularization; 5.1.1 Regularized Discriminant Analysis; 5.1.2 Noise Injection. 
505 8 |a 5.2 Complexity Regularization5.2.1 Regularization of the Error; 5.2.2 Structural Risk Minimization; 5.2.3 Empirical Complexity ; 5.3 Feature Selection; 5.3.1 Peaking Phenomenon; 5.3.2 Feature Selection Algorithms; 5.3.3 Impact of Error Estimation on Feature Selection; 5.3.4 Redundancy; 5.3.5 Parallel Incremental Feature Selection; 5.3.6 Bayesian Variable Selection; 5.4 Feature Extraction; Bibliography; 6 Clustering; 6.1 Examples of Clustering Algorithms; 6.1.1 Euclidean Distance Clustering; 6.1.2 Self-Organizing Maps; 6.1.3 Hierarchical Clustering; 6.1.4 Model-Based Cluster Operators. 
500 |a 6.2 Cluster Operators. 
520 |a Genomic signal processing (GSP) can be defined as the analysis, processing, and use of genomic signals to gain biological knowledge, and the translation of that knowledge into systems-based applications that can be used to diagnose and treat genetic diseases. Situated at the crossroads of engineering, biology, mathematics, statistics, and computer science, GSP requires the development of both nonlinear dynamical models that adequately represent genomic regulation, and diagnostic and therapeutic tools based on these models. This book facilitates these developments by providing rigorous mathema. 
546 |a In English. 
590 |a JSTOR  |b Books at JSTOR Demand Driven Acquisitions (DDA) 
590 |a JSTOR  |b Books at JSTOR Evidence Based Acquisitions 
590 |a JSTOR  |b Books at JSTOR All Purchased 
650 0 |a Cellular signal transduction. 
650 0 |a Genetic regulation. 
650 0 |a Genomics  |x Mathematical models. 
650 6 |a Transduction du signal cellulaire. 
650 6 |a Régulation génétique. 
650 6 |a Génomique  |x Modèles mathématiques. 
650 7 |a SCIENCE  |x Life Sciences  |x Biochemistry.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Applied.  |2 bisacsh 
650 7 |a Cellular signal transduction  |2 fast 
650 7 |a Genetic regulation  |2 fast 
650 7 |a Genomics  |x Mathematical models  |2 fast 
700 1 |a Dougherty, Edward R. 
776 0 8 |i Print version:  |a Shmulevich, Ilya.  |t Genomic Signal Processing.  |d Princeton : Princeton University Press, ©2014  |z 9780691117621 
830 0 |a Princeton series in applied mathematics. 
856 4 0 |u https://jstor.uam.elogim.com/stable/10.2307/j.ctt7zv8mk  |z Texto completo 
936 |a BATCHLOAD 
938 |a EBL - Ebook Library  |b EBLB  |n EBL1756203 
938 |a EBSCOhost  |b EBSC  |n 818438 
938 |a YBP Library Services  |b YANK  |n 12040955 
994 |a 92  |b IZTAP