Cargando…

Global surgery formula for the Casson-Walker invariant /

This book presents a new result in 3-dimensional topology. It is well known that any closed oriented 3-manifold can be obtained by surgery on a framed link in S 3. In Global Surgery Formula for the Casson-Walker Invariant, a function F of framed links in S 3 is described, and it is proven that F con...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Lescop, Christine, 1966-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton : Princeton University Press, 1996.
Colección:Annals of mathematics studies ; no. 140.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 JSTOR_ocn887802708
003 OCoLC
005 20231005004200.0
006 m o d
007 cr cnu---unuuu
008 140819s1996 njua ob 001 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d JSTOR  |d YDXCP  |d OCLCQ  |d COO  |d UIU  |d JBG  |d AGLDB  |d IOG  |d DEGRU  |d DEBBG  |d EZ9  |d OCLCQ  |d VTS  |d VT2  |d OCLCQ  |d WYU  |d LVT  |d STF  |d LEAUB  |d M8D  |d OCLCQ  |d UKAHL  |d MM9  |d AJS  |d OCLCQ  |d OCLCO  |d OCLCQ  |d LUU  |d OCLCQ 
019 |a 979780764  |a 992837508  |a 1055335868  |a 1066546061 
020 |a 9781400865154  |q (electronic bk.) 
020 |a 1400865158  |q (electronic bk.) 
020 |z 0691021333 
020 |z 9780691021331 
020 |z 0691021325 
020 |z 9780691021324 
024 7 |a 10.1515/9781400865154  |2 doi 
029 1 |a AU@  |b 000054659291 
029 1 |a CHBIS  |b 010896051 
029 1 |a CHVBK  |b 483385948 
029 1 |a DEBBG  |b BV043032759 
029 1 |a DEBSZ  |b 429953704 
029 1 |a GBVCP  |b 1003778526 
035 |a (OCoLC)887802708  |z (OCoLC)979780764  |z (OCoLC)992837508  |z (OCoLC)1055335868  |z (OCoLC)1066546061 
037 |a 22573/ctt76801d  |b JSTOR 
050 4 |a QA613.658  |b .L47 1996eb 
072 7 |a MAT  |x 038000  |2 bisacsh 
072 7 |a MAT038000  |2 bisacsh 
082 0 4 |a 514/.72  |2 22 
084 |a 31.65  |2 bcl 
084 |a *57M27  |2 msc 
084 |a 57M25  |2 msc 
084 |a 57N10  |2 msc 
049 |a UAMI 
100 1 |a Lescop, Christine,  |d 1966- 
245 1 0 |a Global surgery formula for the Casson-Walker invariant /  |c by Christine Lescop. 
264 1 |a Princeton :  |b Princeton University Press,  |c 1996. 
300 |a 1 online resource (150 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
347 |b PDF 
490 1 |a Annals of mathematics studies ;  |v number 140 
504 |a Includes bibliographical references (pages 147-148) and index. 
505 0 |a Ch. 1. Introduction and statements of the results -- Ch. 2. The Alexander series of a link in a rational homology sphere and some of its properties -- Ch. 3. Invariance of the surgery formula under a twist homeomorphism -- Ch. 4. The formula for surgeries starting from rational homology spheres -- Ch. 5. The invariant [lambda] for 3-manifolds with nonzero rank -- Ch. 6. Applications and variants of the surgery formula -- Appendix: More about the Alexander series. 
588 0 |a Print version record. 
520 |a This book presents a new result in 3-dimensional topology. It is well known that any closed oriented 3-manifold can be obtained by surgery on a framed link in S 3. In Global Surgery Formula for the Casson-Walker Invariant, a function F of framed links in S 3 is described, and it is proven that F consistently defines an invariant, lamda (l), of closed oriented 3-manifolds. l is then expressed in terms of previously known invariants of 3-manifolds. For integral homology spheres, l is the invariant introduced by Casson in 1985, which allowed him to solve old and famous questions in 3-dimensional topology. l becomes simpler as the first Betti number increases. As an explicit function of Alexander polynomials and surgery coefficients of framed links, the function F extends in a natural way to framed links in rational homology spheres. It is proven that F describes the variation of l under any surgery starting from a rational homology sphere. Thus F yields a global surgery formula for the Casson invariant. 
546 |a In English. 
590 |a JSTOR  |b Books at JSTOR All Purchased 
590 |a JSTOR  |b Books at JSTOR Evidence Based Acquisitions 
590 |a JSTOR  |b Books at JSTOR Demand Driven Acquisitions (DDA) 
650 0 |a Surgery (Topology) 
650 0 |a Three-manifolds (Topology) 
650 6 |a Chirurgie (Topologie) 
650 6 |a Variétés topologiques à 3 dimensions. 
650 7 |a MATHEMATICS  |x Topology.  |2 bisacsh 
650 7 |a Surgery (Topology)  |2 fast  |0 (OCoLC)fst01139395 
650 7 |a Three-manifolds (Topology)  |2 fast  |0 (OCoLC)fst01150339 
650 1 7 |a Manifolds.  |2 gtt 
650 1 7 |a Chirurgie (topologie)  |2 gtt 
650 7 |a Chirurgie (Topologie)  |2 ram 
650 7 |a Variétés topologiques à 3 dimensions.  |2 ram 
776 0 8 |i Print version:  |a Lescop, Christine, 1966-  |t Global surgery formula for the Casson-Walker invariant  |z 0691021333  |w (DLC) 95045797  |w (OCoLC)33406805 
830 0 |a Annals of mathematics studies ;  |v no. 140. 
856 4 0 |u https://jstor.uam.elogim.com/stable/10.2307/j.ctt7zv8pj  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH28074159 
938 |a De Gruyter  |b DEGR  |n 9781400865154 
938 |a EBSCOhost  |b EBSC  |n 818429 
938 |a YBP Library Services  |b YANK  |n 12038298 
994 |a 92  |b IZTAP