|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
JSTOR_ocn884012968 |
003 |
OCoLC |
005 |
20231005004200.0 |
006 |
m o d |
007 |
cr |n||||||||| |
008 |
140719s2014 nju o 000 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|e pn
|c EBLCP
|d OCLCO
|d IDEBK
|d DEBSZ
|d OCLCQ
|d JSTOR
|d YDXCP
|d OCLCF
|d N$T
|d OCLCQ
|d OCLCO
|d COO
|d OCLCQ
|d UIU
|d AGLDB
|d OCLCQ
|d EZ9
|d VTS
|d LVT
|d STF
|d DKC
|d OCLCQ
|d M8D
|d OCLCQ
|d AJS
|d OCLCO
|d OCLCQ
|
020 |
|
|
|a 9781400862887
|q (electronic bk.)
|
020 |
|
|
|a 1400862884
|q (electronic bk.)
|
024 |
7 |
|
|a 10.1515/9781400862887
|2 doi
|
029 |
1 |
|
|a AU@
|b 000055998475
|
029 |
1 |
|
|a AU@
|b 000070015274
|
029 |
1 |
|
|a CHBIS
|b 010480811
|
029 |
1 |
|
|a CHVBK
|b 336939825
|
029 |
1 |
|
|a DEBBG
|b BV043778184
|
029 |
1 |
|
|a DEBSZ
|b 412065649
|
029 |
1 |
|
|a DEBSZ
|b 445558059
|
029 |
1 |
|
|a DEBSZ
|b 472834142
|
029 |
1 |
|
|a GBVCP
|b 1003772315
|
035 |
|
|
|a (OCoLC)884012968
|
037 |
|
|
|a 22573/ctt73668h
|b JSTOR
|
050 |
|
4 |
|a QA377 .T682 2014
|
072 |
|
7 |
|a MAT012030
|2 bisacsh
|
072 |
|
7 |
|a MAT
|x 005000
|2 bisacsh
|
072 |
|
7 |
|a MAT
|x 034000
|2 bisacsh
|
082 |
0 |
4 |
|a 515.353
|a 515/.353
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Treves, François.
|
245 |
1 |
0 |
|a Hypo-Analytic Structures :
|b Local Theory (PMS-40).
|
260 |
|
|
|a Princeton :
|b Princeton University Press,
|c 2014.
|
300 |
|
|
|a 1 online resource (516 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Princeton Mathematical Series ;
|v v. 40
|
588 |
0 |
|
|a Print version record.
|
500 |
|
|
|a Cover; Contents.
|
520 |
|
|
|a In Hypo-Analytic Structures Franois Treves provides a systematic approach to the study of the differential structures on manifolds defined by systems of complex vector fields. Serving as his main examples are the elliptic complexes, among which the De Rham and Dolbeault are the best known, and the tangential Cauchy-Riemann operators. Basic geometric entities attached to those structures are isolated, such as maximally real submanifolds and orbits of the system. Treves discusses the existence, uniqueness, and approximation of local solutions to homogeneous and inhomogeneous equations.
|
505 |
0 |
0 |
|t Frontmatter --
|t Contents --
|t Preface --
|t I. Formally and Locally Integrable Structures. Basic Definitions --
|t II. Local Approximation and Representation in Locally Integrable Structures --
|t III. Hypo-Analytic Structures. Hypocomplex Manifolds --
|t IV. Integrable Formal Structures. Normal Forms --
|t V. Involutive Structures With Boundary --
|t VI. Local Integraboity and Local Solvability in Elliptic Structures --
|t VII. Examples of Nonintegrability and of Nonsolvability --
|t VIII. Necessary Conditions for the Vanishing of the Cohomology. Local Solvability of a Single Vector Field --
|t IX. FBI Transform in a Hypo-Analytic Manifold --
|t X. Involutive Systems of Nonlinear First-Order Differential Equations --
|t References --
|t Index.
|
546 |
|
|
|a In English.
|
590 |
|
|
|a JSTOR
|b Books at JSTOR Evidence Based Acquisitions
|
590 |
|
|
|a JSTOR
|b Books at JSTOR All Purchased
|
590 |
|
|
|a JSTOR
|b Books at JSTOR Demand Driven Acquisitions (DDA)
|
650 |
|
0 |
|a Differential equations, Partial.
|
650 |
|
0 |
|a Manifolds (Mathematics)
|
650 |
|
0 |
|a Vector fields.
|
650 |
|
6 |
|a Équations aux dérivées partielles.
|
650 |
|
6 |
|a Variétés (Mathématiques)
|
650 |
|
6 |
|a Champs vectoriels.
|
650 |
|
7 |
|a MATHEMATICS
|x Geometry
|x Differential.
|2 bisacsh
|
650 |
|
7 |
|a MATHEMATICS
|x Calculus.
|2 bisacsh
|
650 |
|
7 |
|a MATHEMATICS
|x Mathematical Analysis.
|2 bisacsh
|
650 |
|
7 |
|a Differential equations, Partial.
|2 fast
|0 (OCoLC)fst00893484
|
650 |
|
7 |
|a Manifolds (Mathematics)
|2 fast
|0 (OCoLC)fst01007726
|
650 |
|
7 |
|a Vector fields.
|2 fast
|0 (OCoLC)fst01164665
|
776 |
0 |
8 |
|i Print version:
|a Treves, François.
|t Hypo-Analytic Structures : Local Theory (PMS-40).
|d Princeton : Princeton University Press, ©2014
|
830 |
|
0 |
|a Princeton mathematical series.
|
856 |
4 |
0 |
|u https://jstor.uam.elogim.com/stable/10.2307/j.ctt7zvvvk
|z Texto completo
|
936 |
|
|
|a BATCHLOAD
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL1700288
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 790981
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n cis28703942
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 11976651
|
994 |
|
|
|a 92
|b IZTAP
|