Cargando…

Bayesian non- and semi-parametric methods and applications /

This book reviews and develops Bayesian non-parametric and semi-parametric methods for applications in microeconometrics and quantitative marketing. Most econometric models used in microeconomics and marketing applications involve arbitrary distributional assumptions. As more data becomes available,...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Rossi, Peter E. (Peter Eric), 1955- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton : Princeton University Press, [2014]
Colección:Econometric and Tinbergen Institutes lectures.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • 1.1. Finite Mixture of Normals Likelihood Function
  • 1.2. Maximum Likelihood Estimation
  • 1.3. Bayesian Inference for the Mixture of Normals Model
  • 1.4. Priors and the Bayesian Model
  • 1.5. Unconstrained Gibbs Sampler
  • 1.6. Label-Switching
  • 1.7. Examples
  • 1.8. Clustering Observations
  • 1.9. Marginalized Samplers
  • \
  • 2.1. Dirichlet Processes-A Construction
  • 2.2. Finite and Infinite Mixture Models
  • 2.3. Stick-Breaking Representation
  • 2.4. Polya Urn Representation and Associated Gibbs Sampler
  • 2.5. Priors on DP Parameters and Hyper-parameters
  • 2.6. Gibbs Sampler for DP Models and Density Estimation
  • 2.7. Scaling the Data
  • 2.8. Density Estimation Examples.
  • 3.1. Joint vs. Conditional Density Approaches
  • 3.2. Implementing the Joint Approach with Mixtures of Normals
  • 3.3. Examples of Non-parametric Regression Using Joint Approach
  • 3.4. Discrete Dependent Variables
  • 3.5. An Example of Expenditure Function Estimation.
  • 4.1. Semi-parametric Regression with DP Priors
  • 4.2. Semi-parametric IV Models.
  • 5.1. Introduction
  • 5.2. Semi-parametric Random Coefficient Logit Models
  • 5.3. An Empirical Example of a Semi-parametric Random Coefficient Logit Model.
  • 6.1. When Are Non-parametric and Semi-parametric Methods Most Useful?
  • 6.2. Semi-parametric or Non-parametric Methods?
  • 6.3. Extensions.