Cargando…

Hangzhou lectures on eigenfunctions of the Laplacian /

Based on lectures given at Zhejiang University in Hangzhou, China, and Johns Hopkins University, this book introduces eigenfunctions on Riemannian manifolds. Christopher Sogge gives a proof of the sharp Weyl formula for the distribution of eigenvalues of Laplace-Beltrami operators, as well as an imp...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Sogge, Christopher D. (Christopher Donald), 1960- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton : Princeton University Press, 2014.
Colección:Annals of mathematics studies ; no. 188.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 JSTOR_ocn869281847
003 OCoLC
005 20231005004200.0
006 m o d
007 cr mn|||||||||
008 140128s2014 nju ob 001 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d YDXCP  |d IDEBK  |d EBLCP  |d E7B  |d JSTOR  |d MHW  |d OSU  |d DEBSZ  |d OCLCQ  |d OCLCF  |d UIU  |d COCUF  |d OCLCQ  |d COO  |d PIFAG  |d OTZ  |d ZCU  |d MERUC  |d OCLCQ  |d LGG  |d DEGRU  |d DEBBG  |d AZK  |d U3W  |d EZ9  |d OCLCQ  |d UUM  |d STF  |d OCLCQ  |d NRAMU  |d ICG  |d VTS  |d OCLCQ  |d INT  |d VT2  |d OCLCQ  |d WYU  |d LVT  |d TKN  |d OCLCQ  |d LEAUB  |d DKC  |d OCLCQ  |d UKAHL  |d OCLCQ  |d SFB  |d OCLCQ  |d AUD  |d HS0  |d LUN  |d OCLCO  |d UIU  |d OCLCQ  |d OCLCO 
066 |c (S 
019 |a 868964132  |a 909875899  |a 961555091  |a 979686260  |a 992852934 
020 |a 9781400850549  |q (electronic bk.) 
020 |a 1400850541  |q (electronic bk.) 
020 |a 9781306375061  |q (electronic bk.) 
020 |a 1306375061  |q (electronic bk.) 
020 |z 9780691160757  |q (hardcover ;  |q alk. paper) 
020 |z 0691160759  |q (hardcover ;  |q alk. paper) 
020 |z 9780691160788  |q (pbk. ;  |q alk. paper) 
020 |z 0691160783  |q (pbk. ;  |q alk. paper) 
024 7 |a 10.1515/9781400850549  |2 doi 
029 1 |a AU@  |b 000052749452 
029 1 |a CHBIS  |b 010480684 
029 1 |a CHVBK  |b 336938756 
029 1 |a DEBBG  |b BV042523173 
029 1 |a DEBBG  |b BV043038789 
029 1 |a DEBBG  |b BV044064778 
029 1 |a DEBSZ  |b 40367462X 
029 1 |a DEBSZ  |b 429949200 
029 1 |a DEBSZ  |b 44555830X 
029 1 |a GBVCP  |b 1003757391 
035 |a (OCoLC)869281847  |z (OCoLC)868964132  |z (OCoLC)909875899  |z (OCoLC)961555091  |z (OCoLC)979686260  |z (OCoLC)992852934 
037 |a 568757  |b MIL 
037 |a 22573/ctt4kdpz6  |b JSTOR 
050 4 |a QA406  |b .S66 2014eb 
072 7 |a MAT  |x 005000  |2 bisacsh 
072 7 |a MAT  |x 034000  |2 bisacsh 
072 7 |a MAT007020  |2 bisacsh 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a MAT007000  |2 bisacsh 
072 7 |a MAT027000  |2 bisacsh 
082 0 4 |a 515/.3533  |2 23 
084 |a SI 830  |2 rvk 
049 |a UAMI 
100 1 |a Sogge, Christopher D.  |q (Christopher Donald),  |d 1960-  |e author. 
245 1 0 |a Hangzhou lectures on eigenfunctions of the Laplacian /  |c Christopher D. Sogge. 
264 1 |a Princeton :  |b Princeton University Press,  |c 2014. 
264 4 |c ©2014 
300 |a 1 online resource (x, 193 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |b PDF 
347 |a text file 
490 1 |a Annals of mathematics studies ;  |v number 188 
520 |a Based on lectures given at Zhejiang University in Hangzhou, China, and Johns Hopkins University, this book introduces eigenfunctions on Riemannian manifolds. Christopher Sogge gives a proof of the sharp Weyl formula for the distribution of eigenvalues of Laplace-Beltrami operators, as well as an improved version of the Weyl formula, the Duistermaat-Guillemin theorem under natural assumptions on the geodesic flow. Sogge shows that there is quantum ergodicity of eigenfunctions if the geodesic flow is ergodic. Sogge begins with a treatment of the Hadamard parametrix before proving the first main result, the sharp Weyl formula. 
504 |a Includes bibliographical references (pages 185-189) and index. 
505 0 |a A review : the Laplacian and the d'Alembertian -- Geodesics and the Hadamard paramatrix -- The sharp Weyl formula -- Stationary phase and microlocal analysis -- Improved spectral asymptotics and periodic geodesics -- Classical and quantum ergodicity -- Appendix. 
588 0 |a Print version record. 
546 |a In English. 
590 |a JSTOR  |b Books at JSTOR Demand Driven Acquisitions (DDA) 
590 |a JSTOR  |b Books at JSTOR All Purchased 
590 |a JSTOR  |b Books at JSTOR Evidence Based Acquisitions 
650 0 |a Laplacian operator. 
650 0 |a Eigenfunctions. 
650 4 |a Analysis. 
650 4 |a Eigenfunctions. 
650 4 |a Laplacian operator. 
650 4 |a Mathematics. 
650 4 |a Mathematik. 
650 6 |a Laplacien. 
650 6 |a Fonctions propres. 
650 7 |a MATHEMATICS  |x Calculus.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Mathematical Analysis.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Differential Equations  |x Partial.  |2 bisacsh 
650 7 |a Eigenfunctions  |2 fast 
650 7 |a Laplacian operator  |2 fast 
776 0 8 |i Print version:  |a Sogge, Christopher D. (Christopher Donald), 1960-  |t Hangzhou lectures on eigenfunctions of the Laplacian.  |d Princeton, New Jersey : Princeton University Press, 2014  |z 9780691160757  |w (DLC) 2013030692  |w (OCoLC)857234298 
830 0 |a Annals of mathematics studies ;  |v no. 188. 
856 4 0 |u https://jstor.uam.elogim.com/stable/10.2307/j.ctt5hhp2g  |z Texto completo 
880 0 |6 505-00/(S  |a Cover -- Title -- Copyright -- Dedication -- Contents -- Preface -- 1 A review: The Laplacian and the d'Alembertian -- 1.1 The Laplacian -- 1.2 Fundamental solutions of the d'Alembertian -- 2 Geodesics and the Hadamard parametrix -- 2.1 Laplace-Beltrami operators -- 2.2 Some elliptic regularity estimates -- 2.3 Geodesics and normal coordinates-a brief review -- 2.4 The Hadamard parametrix -- 3 The sharp Weyl formula -- 3.1 Eigenfunction expansions -- 3.2 Sup-norm estimates for eigenfunctions and spectral clusters -- 3.3 Spectral asymptotics: The sharp Weyl formula -- 3.4 Sharpness: Spherical harmonics -- 3.5 Improved results: The torus -- 3.6 Further improvements: Manifolds with nonpositive curvature -- 4 Stationary phase and microlocal analysis -- 4.1 The method of stationary phase -- 4.2 Pseudodifferential operators -- 4.3 Propagation of singularities and Egorov's theorem -- 4.4 The Friedrichs quantization -- 5 Improved spectral asymptotics and periodic geodesics -- 5.1 Periodic geodesics and trace regularity -- 5.2 Trace estimates -- 5.3 The Duistermaat-Guillemin theorem -- 5.4 Geodesic loops and improved sup-norm estimates -- 6 Classical and quantum ergodicity -- 6.1 Classical ergodicity -- 6.2 Quantum ergodicity -- Appendix -- A.1 The Fourier transform and the spaces S(Rn) and S0(Rn) -- A.2 The spaces D′(Ω) and E′(Ω) -- A.3 Homogeneous distributions -- A.4 Pullbacks of distributions -- A.5 Convolution of distributions -- Notes -- Bibliography -- Index -- Symbol Glossary. 
938 |a YBP Library Services  |b YANK  |n 11607113 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis27392234 
938 |a EBSCOhost  |b EBSC  |n 663526 
938 |a ebrary  |b EBRY  |n ebr10829680 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL1561564 
938 |a De Gruyter  |b DEGR  |n 9781400850549 
938 |a Askews and Holts Library Services  |b ASKH  |n AH26388232 
994 |a 92  |b IZTAP