|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
JSTOR_ocn869281847 |
003 |
OCoLC |
005 |
20231005004200.0 |
006 |
m o d |
007 |
cr mn||||||||| |
008 |
140128s2014 nju ob 001 0 eng d |
040 |
|
|
|a N$T
|b eng
|e rda
|e pn
|c N$T
|d YDXCP
|d IDEBK
|d EBLCP
|d E7B
|d JSTOR
|d MHW
|d OSU
|d DEBSZ
|d OCLCQ
|d OCLCF
|d UIU
|d COCUF
|d OCLCQ
|d COO
|d PIFAG
|d OTZ
|d ZCU
|d MERUC
|d OCLCQ
|d LGG
|d DEGRU
|d DEBBG
|d AZK
|d U3W
|d EZ9
|d OCLCQ
|d UUM
|d STF
|d OCLCQ
|d NRAMU
|d ICG
|d VTS
|d OCLCQ
|d INT
|d VT2
|d OCLCQ
|d WYU
|d LVT
|d TKN
|d OCLCQ
|d LEAUB
|d DKC
|d OCLCQ
|d UKAHL
|d OCLCQ
|d SFB
|d OCLCQ
|d AUD
|d HS0
|d LUN
|d OCLCO
|d UIU
|d OCLCQ
|d OCLCO
|
066 |
|
|
|c (S
|
019 |
|
|
|a 868964132
|a 909875899
|a 961555091
|a 979686260
|a 992852934
|
020 |
|
|
|a 9781400850549
|q (electronic bk.)
|
020 |
|
|
|a 1400850541
|q (electronic bk.)
|
020 |
|
|
|a 9781306375061
|q (electronic bk.)
|
020 |
|
|
|a 1306375061
|q (electronic bk.)
|
020 |
|
|
|z 9780691160757
|q (hardcover ;
|q alk. paper)
|
020 |
|
|
|z 0691160759
|q (hardcover ;
|q alk. paper)
|
020 |
|
|
|z 9780691160788
|q (pbk. ;
|q alk. paper)
|
020 |
|
|
|z 0691160783
|q (pbk. ;
|q alk. paper)
|
024 |
7 |
|
|a 10.1515/9781400850549
|2 doi
|
029 |
1 |
|
|a AU@
|b 000052749452
|
029 |
1 |
|
|a CHBIS
|b 010480684
|
029 |
1 |
|
|a CHVBK
|b 336938756
|
029 |
1 |
|
|a DEBBG
|b BV042523173
|
029 |
1 |
|
|a DEBBG
|b BV043038789
|
029 |
1 |
|
|a DEBBG
|b BV044064778
|
029 |
1 |
|
|a DEBSZ
|b 40367462X
|
029 |
1 |
|
|a DEBSZ
|b 429949200
|
029 |
1 |
|
|a DEBSZ
|b 44555830X
|
029 |
1 |
|
|a GBVCP
|b 1003757391
|
035 |
|
|
|a (OCoLC)869281847
|z (OCoLC)868964132
|z (OCoLC)909875899
|z (OCoLC)961555091
|z (OCoLC)979686260
|z (OCoLC)992852934
|
037 |
|
|
|a 568757
|b MIL
|
037 |
|
|
|a 22573/ctt4kdpz6
|b JSTOR
|
050 |
|
4 |
|a QA406
|b .S66 2014eb
|
072 |
|
7 |
|a MAT
|x 005000
|2 bisacsh
|
072 |
|
7 |
|a MAT
|x 034000
|2 bisacsh
|
072 |
|
7 |
|a MAT007020
|2 bisacsh
|
072 |
|
7 |
|a MAT034000
|2 bisacsh
|
072 |
|
7 |
|a MAT007000
|2 bisacsh
|
072 |
|
7 |
|a MAT027000
|2 bisacsh
|
082 |
0 |
4 |
|a 515/.3533
|2 23
|
084 |
|
|
|a SI 830
|2 rvk
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Sogge, Christopher D.
|q (Christopher Donald),
|d 1960-
|e author.
|
245 |
1 |
0 |
|a Hangzhou lectures on eigenfunctions of the Laplacian /
|c Christopher D. Sogge.
|
264 |
|
1 |
|a Princeton :
|b Princeton University Press,
|c 2014.
|
264 |
|
4 |
|c ©2014
|
300 |
|
|
|a 1 online resource (x, 193 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|b PDF
|
347 |
|
|
|a text file
|
490 |
1 |
|
|a Annals of mathematics studies ;
|v number 188
|
520 |
|
|
|a Based on lectures given at Zhejiang University in Hangzhou, China, and Johns Hopkins University, this book introduces eigenfunctions on Riemannian manifolds. Christopher Sogge gives a proof of the sharp Weyl formula for the distribution of eigenvalues of Laplace-Beltrami operators, as well as an improved version of the Weyl formula, the Duistermaat-Guillemin theorem under natural assumptions on the geodesic flow. Sogge shows that there is quantum ergodicity of eigenfunctions if the geodesic flow is ergodic. Sogge begins with a treatment of the Hadamard parametrix before proving the first main result, the sharp Weyl formula.
|
504 |
|
|
|a Includes bibliographical references (pages 185-189) and index.
|
505 |
0 |
|
|a A review : the Laplacian and the d'Alembertian -- Geodesics and the Hadamard paramatrix -- The sharp Weyl formula -- Stationary phase and microlocal analysis -- Improved spectral asymptotics and periodic geodesics -- Classical and quantum ergodicity -- Appendix.
|
588 |
0 |
|
|a Print version record.
|
546 |
|
|
|a In English.
|
590 |
|
|
|a JSTOR
|b Books at JSTOR Demand Driven Acquisitions (DDA)
|
590 |
|
|
|a JSTOR
|b Books at JSTOR All Purchased
|
590 |
|
|
|a JSTOR
|b Books at JSTOR Evidence Based Acquisitions
|
650 |
|
0 |
|a Laplacian operator.
|
650 |
|
0 |
|a Eigenfunctions.
|
650 |
|
4 |
|a Analysis.
|
650 |
|
4 |
|a Eigenfunctions.
|
650 |
|
4 |
|a Laplacian operator.
|
650 |
|
4 |
|a Mathematics.
|
650 |
|
4 |
|a Mathematik.
|
650 |
|
6 |
|a Laplacien.
|
650 |
|
6 |
|a Fonctions propres.
|
650 |
|
7 |
|a MATHEMATICS
|x Calculus.
|2 bisacsh
|
650 |
|
7 |
|a MATHEMATICS
|x Mathematical Analysis.
|2 bisacsh
|
650 |
|
7 |
|a MATHEMATICS
|x Differential Equations
|x Partial.
|2 bisacsh
|
650 |
|
7 |
|a Eigenfunctions
|2 fast
|
650 |
|
7 |
|a Laplacian operator
|2 fast
|
776 |
0 |
8 |
|i Print version:
|a Sogge, Christopher D. (Christopher Donald), 1960-
|t Hangzhou lectures on eigenfunctions of the Laplacian.
|d Princeton, New Jersey : Princeton University Press, 2014
|z 9780691160757
|w (DLC) 2013030692
|w (OCoLC)857234298
|
830 |
|
0 |
|a Annals of mathematics studies ;
|v no. 188.
|
856 |
4 |
0 |
|u https://jstor.uam.elogim.com/stable/10.2307/j.ctt5hhp2g
|z Texto completo
|
880 |
0 |
|
|6 505-00/(S
|a Cover -- Title -- Copyright -- Dedication -- Contents -- Preface -- 1 A review: The Laplacian and the d'Alembertian -- 1.1 The Laplacian -- 1.2 Fundamental solutions of the d'Alembertian -- 2 Geodesics and the Hadamard parametrix -- 2.1 Laplace-Beltrami operators -- 2.2 Some elliptic regularity estimates -- 2.3 Geodesics and normal coordinates-a brief review -- 2.4 The Hadamard parametrix -- 3 The sharp Weyl formula -- 3.1 Eigenfunction expansions -- 3.2 Sup-norm estimates for eigenfunctions and spectral clusters -- 3.3 Spectral asymptotics: The sharp Weyl formula -- 3.4 Sharpness: Spherical harmonics -- 3.5 Improved results: The torus -- 3.6 Further improvements: Manifolds with nonpositive curvature -- 4 Stationary phase and microlocal analysis -- 4.1 The method of stationary phase -- 4.2 Pseudodifferential operators -- 4.3 Propagation of singularities and Egorov's theorem -- 4.4 The Friedrichs quantization -- 5 Improved spectral asymptotics and periodic geodesics -- 5.1 Periodic geodesics and trace regularity -- 5.2 Trace estimates -- 5.3 The Duistermaat-Guillemin theorem -- 5.4 Geodesic loops and improved sup-norm estimates -- 6 Classical and quantum ergodicity -- 6.1 Classical ergodicity -- 6.2 Quantum ergodicity -- Appendix -- A.1 The Fourier transform and the spaces S(Rn) and S0(Rn) -- A.2 The spaces D′(Ω) and E′(Ω) -- A.3 Homogeneous distributions -- A.4 Pullbacks of distributions -- A.5 Convolution of distributions -- Notes -- Bibliography -- Index -- Symbol Glossary.
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 11607113
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n cis27392234
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 663526
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10829680
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL1561564
|
938 |
|
|
|a De Gruyter
|b DEGR
|n 9781400850549
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH26388232
|
994 |
|
|
|a 92
|b IZTAP
|