Cargando…

Semiclassical soliton ensembles for the focusing nonlinear Schrödinger equation /

This book represents the first asymptotic analysis, via completely integrable techniques, of the initial value problem for the focusing nonlinear Schrödinger equation in the semiclassical asymptotic regime. This problem is a key model in nonlinear optical physics and has increasingly important appl...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Kamvissis, Spyridon
Otros Autores: McLaughlin, K. T-R (Kenneth T-R), 1969-, Miller, Peter D. (Peter David), 1967-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton, N.J. : Princeton University Press, ©2003.
Colección:Annals of mathematics studies ; no. 154.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 JSTOR_ocn839304452
003 OCoLC
005 20231005004200.0
006 m o d
007 cr cnu---unuuu
008 130415s2003 njua ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d ORZ  |d E7B  |d JSTOR  |d N$T  |d OCLCF  |d IDEBK  |d YDXCP  |d OCLCQ  |d COO  |d DEBBG  |d OCLCQ  |d LOA  |d OCLCQ  |d OCLCO  |d UIU  |d COCUF  |d AGLDB  |d DEBSZ  |d MOR  |d CCO  |d PIFAG  |d OTZ  |d WT2  |d OCLCQ  |d IOG  |d U3W  |d EZ9  |d STF  |d WRM  |d VTS  |d NRAMU  |d INT  |d REC  |d VT2  |d OCLCO  |d AU@  |d OCLCO  |d OCLCQ  |d WYU  |d LVT  |d OCLCQ  |d M8D  |d OCLCO  |d UKAHL  |d OCLCQ  |d HS0  |d UKCRE  |d VLB  |d MM9  |d INARC  |d AJS  |d OCLCQ  |d TUHNV  |d OCLCO  |d OCLCQ  |d LUU  |d OCLCQ  |d OCLCO 
015 |a GBA3Y6730  |2 bnb 
019 |a 779498421  |a 842893546  |a 960200391  |a 961599643  |a 962703676  |a 988483659  |a 991959820  |a 994989260  |a 1037760155  |a 1038691304  |a 1045485336  |a 1055400941  |a 1064087023  |a 1153517435  |a 1181900694  |a 1228577260  |a 1228595212  |a 1243616004  |a 1258399456 
020 |a 9781400837182  |q (electronic bk.) 
020 |a 1400837189  |q (electronic bk.) 
020 |a 1299443451  |q (ebk) 
020 |a 9781299443457  |q (ebk) 
020 |z 0691114838 
020 |z 9780691114835 
020 |z 069111482X 
020 |z 9780691114828 
024 7 |a 10.1515/9781400837182  |2 doi 
029 1 |a AU@  |b 000050266899 
029 1 |a AU@  |b 000053265460 
029 1 |a CHBIS  |b 010896029 
029 1 |a CHVBK  |b 483397172 
029 1 |a DEBBG  |b BV043060145 
029 1 |a DEBBG  |b BV043713080 
029 1 |a DEBSZ  |b 44650100X 
029 1 |a DEBSZ  |b 478275870 
029 1 |a GBVCP  |b 1003729274 
029 1 |a NZ1  |b 16078442 
029 1 |a NZ1  |b 16290271 
035 |a (OCoLC)839304452  |z (OCoLC)779498421  |z (OCoLC)842893546  |z (OCoLC)960200391  |z (OCoLC)961599643  |z (OCoLC)962703676  |z (OCoLC)988483659  |z (OCoLC)991959820  |z (OCoLC)994989260  |z (OCoLC)1037760155  |z (OCoLC)1038691304  |z (OCoLC)1045485336  |z (OCoLC)1055400941  |z (OCoLC)1064087023  |z (OCoLC)1153517435  |z (OCoLC)1181900694  |z (OCoLC)1228577260  |z (OCoLC)1228595212  |z (OCoLC)1243616004  |z (OCoLC)1258399456 
037 |a 22573/ctt2f0vrc  |b JSTOR 
050 4 |a QC174.26.W28  |b K35 2003eb 
072 7 |a SCI  |x 067000  |2 bisacsh 
072 7 |a MAT040000  |2 bisacsh 
082 0 4 |a 530.12/4  |2 22 
084 |a 31.81  |2 bcl 
084 |a SI 830  |2 rvk 
084 |a SK 540  |2 rvk 
084 |a MAT 354f  |2 stub 
084 |a MAT 356f  |2 stub 
049 |a UAMI 
100 1 |a Kamvissis, Spyridon. 
245 1 0 |a Semiclassical soliton ensembles for the focusing nonlinear Schrödinger equation /  |c Spyridon Kamvissis, Kenneth D.T-R McLaughlin, Peter D. Miller. 
260 |a Princeton, N.J. :  |b Princeton University Press,  |c ©2003. 
300 |a 1 online resource (xii, 265 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file 
380 |a Bibliography 
490 1 |a Annals of mathematics studies ;  |v no. 154 
504 |a Includes bibliographical references (pages 255-258) and index. 
588 0 |a Print version record. 
520 |a This book represents the first asymptotic analysis, via completely integrable techniques, of the initial value problem for the focusing nonlinear Schrödinger equation in the semiclassical asymptotic regime. This problem is a key model in nonlinear optical physics and has increasingly important applications in the telecommunications industry. The authors exploit complete integrability to establish pointwise asymptotics for this problem's solution in the semiclassical regime and explicit integration for the underlying nonlinear, elliptic, partial differential equations suspected of governing the semiclassical behavior. In doing so they also aim to explain the observed gradient catastrophe for the underlying nonlinear elliptic partial differential equations, and to set forth a detailed, pointwise asymptotic description of the violent oscillations that emerge following the gradient catastrophe. To achieve this, the authors have extended the reach of two powerful analytical techniques that have arisen through the asymptotic analysis of integrable systems: the Lax-Levermore-Venakides variational approach to singular limits in integrable systems, and Deift and Zhou's nonlinear Steepest-Descent/Stationary Phase method for the analysis of Riemann-Hilbert problems. In particular, they introduce a systematic procedure for handling certain Riemann-Hilbert problems with poles accumulating on curves in the plane. This book, which includes an appendix on the use of the Fredholm theory for Riemann-Hilbert problems in the Hölder class, is intended for researchers and graduate students of applied mathematics and analysis, especially those with an interest in integrable systems, nonlinear waves, or complex analysis. 
546 |a In English. 
505 0 |a Cover; Title; Copyright; Contents; List of Figures and Tables; Preface; Chapter 1. Introduction and Overview; Chapter 2. Holomorphic Riemann-Hilbert Problems for Solitons; Chapter 3. Semiclassical Soliton Ensembles; Chapter 4. Asymptotic Analysis of the Inverse Problem; Chapter 5. Direct Construction of the Complex Phase; Chapter 6. The Genus-Zero Ansatz; Chapter 7. The Transition to Genus Two; Chapter 8. Variational Theory of the Complex Phase; Chapter 9. Conclusion and Outlook; Appendix A. Hölder Theory of Local Riemann-Hilbert Problems 
505 8 |a Appendix B. Near-Identity Riemann-Hilbert Problems in L2Bibliography; Index 
590 |a JSTOR  |b Books at JSTOR Evidence Based Acquisitions 
590 |a JSTOR  |b Books at JSTOR All Purchased 
590 |a JSTOR  |b Books at JSTOR Demand Driven Acquisitions (DDA) 
650 0 |a Schrödinger equation. 
650 6 |a Équation de Schrödinger. 
650 7 |a SCIENCE  |x Waves & Wave Mechanics.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Complex Analysis.  |2 bisacsh 
650 7 |a Schrödinger equation  |2 fast 
650 7 |a Nichtlineare Schrödinger-Gleichung  |2 gnd 
650 7 |a Schrödinger-Gleichung  |2 gnd 
650 7 |a Soliton  |2 gnd 
650 1 7 |a Schrödingervergelijking.  |2 gtt 
650 1 7 |a Solitons.  |2 gtt 
700 1 |a McLaughlin, K. T-R  |q (Kenneth T-R),  |d 1969- 
700 1 |a Miller, Peter D.  |q (Peter David),  |d 1967- 
776 0 8 |i Print version:  |a Kamvissis, Spyridon.  |t Semiclassical soliton ensembles for the focusing nonlinear Schrödinger equation.  |d Princeton, N.J. : Princeton University Press, ©2003  |z 0691114838  |w (DLC) 2003108056  |w (OCoLC)51780336 
830 0 |a Annals of mathematics studies ;  |v no. 154. 
856 4 0 |u https://jstor.uam.elogim.com/stable/10.2307/j.ctt2jc946  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH28126600 
938 |a ebrary  |b EBRY  |n ebr10682501 
938 |a EBSCOhost  |b EBSC  |n 563758 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis25212546 
938 |a Internet Archive  |b INAR  |n semiclassicalsol0000kamv 
938 |a YBP Library Services  |b YANK  |n 10438585 
994 |a 92  |b IZTAP