MARC

LEADER 00000cam a2200000M 4500
001 JSTOR_ocn823941199
003 OCoLC
005 20231005004200.0
006 m o d
007 cr |n|||||||||
008 110516e20120218nju eo 000 0 eng d
040 |a BIP US  |b eng  |e pn  |c S4S  |d OCLCQ  |d WYU  |d AGLDB  |d OCLCQ  |d NETUE  |d LGG  |d UMI  |d COO  |d JSTOR  |d DEBSZ  |d N$T  |d TEFOD  |d DEBBG  |d JBG  |d CUS  |d LIV  |d IOG  |d EZ9  |d OCLCF  |d VTS  |d CEF  |d AU@  |d LVT  |d MQY  |d M8D  |d UKAHL  |d BRF  |d OCLCO 
019 |a 815649065  |a 826866929  |a 992819054  |a 1058169017  |a 1264834978 
020 |a 9780691152660 
020 |a 0691152667  |q (Trade Paper) 
020 |a 9781400830329  |q (electronic bk.) 
020 |a 140083032X  |q (electronic bk.) 
029 1 |a AU@  |b 000050590613 
029 1 |a AU@  |b 000053283093 
029 1 |a CHBIS  |b 011058515 
029 1 |a CHVBK  |b 498851192 
029 1 |a DEBBG  |b BV041120466 
029 1 |a DEBBG  |b BV042693168 
029 1 |a DEBBG  |b BV043126614 
029 1 |a DEBSZ  |b 396753647 
029 1 |a DEBSZ  |b 424632403 
029 1 |a DEBSZ  |b 447054023 
029 1 |a GBVCP  |b 1003715575 
029 1 |a GBVCP  |b 814261396 
029 1 |a AU@  |b 000070013098 
035 |a (OCoLC)823941199  |z (OCoLC)815649065  |z (OCoLC)826866929  |z (OCoLC)992819054  |z (OCoLC)1058169017  |z (OCoLC)1264834978 
037 |b 00021620 
050 4 |a Internet Access  |b ASAV 
072 7 |a MAT000000  |2 bisacsh 
072 7 |a COM060090  |2 bisacsh 
072 7 |a COM060120  |2 bisacsh 
072 7 |a COM051300  |2 bisacsh 
072 7 |a LAN  |x 025000  |2 bisacsh 
082 0 4 |a 025.0425  |2 23 
049 |a UAMI 
100 1 |a Langville, Amy N.,  |e author. 
245 1 0 |a Google's PageRank and Beyond - the Science of Search Engine Rankings. 
260 |a Princeton :  |b Princeton University Press  |a Ewing :  |b California Princeton Fulfillment Services [distributor] 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
521 |a College Audience  |b Princeton University Press. 
520 8 |a Annotation  |b <p>Why doesn't your home page appear on the first page of search results, even when you query your own name? How do other web pages always appear at the top? What creates these powerful rankings? And how? The first book ever about the science of web page rankings,<i>Google's PageRank and Beyond</i>supplies the answers to these and other questions and more.</p><p>The book serves two very different audiences: the curious science reader and the technical computational reader. The chapters build in mathematical sophistication, so that the first five are accessible to the general academic reader. While other chapters are much more mathematical in nature, each one contains something for both audiences. For example, the authors include entertaining asides such as how search engines make money and how the Great Firewall of China influences research.</p><p>The book includes an extensive background chapter designed to help readers learn more about the mathematics of search engines, and it contains several MATLAB codes and links to sample web data sets. The philosophy throughout is to encourage readers to experiment with the ideas and algorithms in the text.</p><p>Any business seriously interested in improving its rankings in the major search engines can benefit from the clear examples, sample code, and list of resources provided.</p><ul><li>Many illustrative examples and entertaining asides</li><li>MATLAB code</li><li>Accessible and informal style</li><li>Complete and self-contained section for mathematics review</li></ul> 
504 |a Includes bibliographical references and index. 
505 0 |a Introduction to web search engines -- Crawling, indexing, and query processing -- Ranking webpages by popularity -- The mathematics of Google's PageRank -- Parameters in the PageRank model -- The sensitivity of PageRank -- The PageRank problem as a linear system -- Issues in large-scale implementation of PageRank -- Accelerating the computation of PageRank -- Updating the PageRank vector -- The HITS method for ranking webpages -- Other link methods for ranking webpages -- The future of web information retrieval -- Resources for web information retrieval -- The mathematics guide. 
590 |a JSTOR  |b Books at JSTOR All Purchased 
590 |a JSTOR  |b Books at JSTOR Demand Driven Acquisitions (DDA) 
590 |a JSTOR  |b Books at JSTOR Evidence Based Acquisitions 
630 0 0 |a Google. 
630 0 7 |a Google.  |2 blmlsh 
630 0 7 |a Google  |2 fast 
650 0 |a Web sites  |x Ratings and rankings  |x Mathematics. 
650 0 |a Web search engines. 
650 0 |a Internet searching  |x Mathematics. 
650 0 |a World Wide Web  |x Subject access  |x Mathematics. 
650 6 |a Sites Web  |x Classement  |x Mathématiques. 
650 6 |a Moteurs de recherche sur Internet. 
650 6 |a Recherche sur Internet  |x Mathématiques. 
650 6 |a Web  |x Accès par sujet  |x Mathématiques. 
650 7 |a MATHEMATICS  |x General.  |2 bisacsh 
650 7 |a LANGUAGE ARTS & DISCIPLINES  |x Library & Information Science  |x General.  |2 bisacsh 
650 7 |a Web search engines  |2 fast 
700 1 |a Meyer, Carl D.,  |e author. 
856 4 0 |u https://jstor.uam.elogim.com/stable/10.2307/j.ctt7t8z9  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH26387542 
938 |a EBSCOhost  |b EBSC  |n 310271 
994 |a 92  |b IZTAP