|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
JSTOR_ocn823170151 |
003 |
OCoLC |
005 |
20231005004200.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
130102s2008 njua ob 001 0 eng d |
040 |
|
|
|a N$T
|b eng
|e pn
|c N$T
|d OCLCE
|d E7B
|d OCLCA
|d IDEBK
|d OCLCA
|d JSTOR
|d OCLCF
|d OCLCQ
|d YDXCP
|d OCLCQ
|d CHVBK
|d OCLCQ
|d AZK
|d COCUF
|d AGLDB
|d MOR
|d CCO
|d OCLCO
|d PIFAG
|d OTZ
|d OCLCQ
|d IOG
|d U3W
|d EZ9
|d UUM
|d STF
|d WRM
|d VTS
|d NRAMU
|d INT
|d REC
|d VT2
|d OCLCO
|d AU@
|d OCLCQ
|d WYU
|d LVT
|d OCLCQ
|d M8D
|d UKAHL
|d HS0
|d UKCRE
|d VLY
|d MM9
|d OCLCQ
|d OCLCO
|d LUU
|d OCLCO
|d OCLCQ
|
015 |
|
|
|a GBA768809
|2 bnb
|
016 |
7 |
|
|a 013829036
|2 Uk
|
019 |
|
|
|a 652274206
|a 945911924
|a 961604097
|a 962592164
|a 988450667
|a 991961271
|a 994998387
|a 1037712810
|a 1038682680
|a 1045493533
|a 1055337770
|a 1058139922
|a 1065157518
|a 1153452799
|a 1162006403
|a 1181901229
|a 1228547409
|
020 |
|
|
|a 9781400845941
|q (electronic bk.)
|
020 |
|
|
|a 1400845947
|q (electronic bk.)
|
020 |
|
|
|a 1283851288
|
020 |
|
|
|a 9781283851282
|
020 |
|
|
|z 9780691131382
|
020 |
|
|
|z 0691131384
|
029 |
1 |
|
|a AU@
|b 000053298953
|
029 |
1 |
|
|a CHBIS
|b 010686311
|
029 |
1 |
|
|a CHBIS
|b 011058627
|
029 |
1 |
|
|a CHVBK
|b 364501219
|
029 |
1 |
|
|a CHVBK
|b 498847489
|
029 |
1 |
|
|a DEBBG
|b BV040885451
|
029 |
1 |
|
|a DEBBG
|b BV043057793
|
029 |
1 |
|
|a DEBSZ
|b 446460095
|
029 |
1 |
|
|a GBVCP
|b 1003721141
|
029 |
1 |
|
|a NZ1
|b 15344443
|
029 |
1 |
|
|a AU@
|b 000070013261
|
035 |
|
|
|a (OCoLC)823170151
|z (OCoLC)652274206
|z (OCoLC)945911924
|z (OCoLC)961604097
|z (OCoLC)962592164
|z (OCoLC)988450667
|z (OCoLC)991961271
|z (OCoLC)994998387
|z (OCoLC)1037712810
|z (OCoLC)1038682680
|z (OCoLC)1045493533
|z (OCoLC)1055337770
|z (OCoLC)1058139922
|z (OCoLC)1065157518
|z (OCoLC)1153452799
|z (OCoLC)1162006403
|z (OCoLC)1181901229
|z (OCoLC)1228547409
|
037 |
|
|
|a 22573/ctt1jkhx4
|b JSTOR
|
050 |
|
4 |
|a QA183
|b .D38 2008eb
|
072 |
|
7 |
|a MAT
|x 014000
|2 bisacsh
|
072 |
|
7 |
|a MAT012000
|2 bisacsh
|
072 |
|
7 |
|a MAT014000
|2 bisacsh
|
072 |
|
7 |
|a MAT038000
|2 bisacsh
|
082 |
0 |
4 |
|a 512/.2
|2 22
|
084 |
|
|
|a 20F55
|a 20-02
|a 57-02
|a 57M07
|2 msc
|
084 |
|
|
|a SK 260
|2 rvk
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Davis, Michael,
|d 1949 April 26-
|
245 |
1 |
4 |
|a The geometry and topology of coxeter groups /
|c Michael W. Davis.
|
260 |
|
|
|a Princeton :
|b Princeton University Press,
|c ©2008.
|
300 |
|
|
|a 1 online resource (xiv, 584 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a London Mathematical Society monographs series ;
|v 32
|
500 |
|
|
|a Series numbering from spine.
|
504 |
|
|
|a Includes bibliographical references (pages 555-572) and index.
|
520 |
1 |
|
|a "The Geometry and Topology of Coxeter Groups is a comprehensive and authoritative treatment of Coxeter groups from the viewpoint of geometric group theory. Groups generated by reflections are ubiquitous in mathematics, and there are classical examples of reflection groups in spherical, Euclidean, and hyperbolic geometry. Any Coxeter group can be realized as a group generated by reflection on a certain contractible cell complex, and this complex is the principal subject of this book."--Jacket
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Cover; Contents; Preface; Chapter 1 INTRODUCTION AND PREVIEW; 1.1 Introduction; 1.2 A Preview of the Right-Angled Case; Chapter 2 SOME BASIC NOTIONS IN GEOMETRIC GROUP THEORY; 2.1 Cayley Graphs and Word Metrics; 2.2 Cayley 2-Complexes; 2.3 Background on Aspherical Spaces; Chapter 3 COXETER GROUPS; 3.1 Dihedral Groups; 3.2 Reflection Systems; 3.3 Coxeter Systems; 3.4 The Word Problem; 3.5 Coxeter Diagrams; Chapter 4 MORE COMBINATORIAL THEORY OF COXETER GROUPS; 4.1 Special Subgroups in Coxeter Groups; 4.2 Reflections; 4.3 The Shortest Element in a Special Coset
|
505 |
8 |
|
|a 4.4 Another Characterization of Coxeter Groups4.5 Convex Subsets of W; 4.6 The Element of Longest Length; 4.7 The Letters with Which a Reduced Expression Can End; 4.8 A Lemma of Tits; 4.9 Subgroups Generated by Reflections; 4.10 Normalizers of Special Subgroups; Chapter 5 THE BASIC CONSTRUCTION; 5.1 The Space U; 5.2 The Case of a Pre-Coxeter System; 5.3 Sectors in U; Chapter 6 GEOMETRIC REFLECTION GROUPS; 6.1 Linear Reflections; 6.2 Spaces of Constant Curvature; 6.3 Polytopes with Nonobtuse Dihedral Angles; 6.4 The Developing Map; 6.5 Polygon Groups
|
546 |
|
|
|a English.
|
590 |
|
|
|a JSTOR
|b Books at JSTOR Evidence Based Acquisitions
|
590 |
|
|
|a JSTOR
|b Books at JSTOR All Purchased
|
590 |
|
|
|a JSTOR
|b Books at JSTOR Demand Driven Acquisitions (DDA)
|
650 |
|
0 |
|a Coxeter groups.
|
650 |
|
0 |
|a Geometric group theory.
|
650 |
|
6 |
|a Groupes de Coxeter.
|
650 |
|
6 |
|a Théorie géométrique des groupes.
|
650 |
|
7 |
|a MATHEMATICS
|x Group Theory.
|2 bisacsh
|
650 |
|
7 |
|a MATHEMATICS
|x Geometry
|x General.
|2 bisacsh
|
650 |
|
7 |
|a Coxeter groups.
|2 fast
|0 (OCoLC)fst00882060
|
650 |
|
7 |
|a Geometric group theory.
|2 fast
|0 (OCoLC)fst00940833
|
650 |
|
7 |
|a Coxeter-Gruppe
|2 gnd
|
776 |
0 |
8 |
|i Print version:
|a Davis, Michael, 1949 April 26-
|t Geometry and topology of coxeter groups.
|d Princeton : Princeton University Press, ©2008
|z 9780691131382
|w (DLC) 2006052879
|w (OCoLC)77485786
|
830 |
|
0 |
|a London Mathematical Society monographs ;
|v new ser., no. 32.
|
856 |
4 |
0 |
|u https://jstor.uam.elogim.com/stable/10.2307/j.ctt1r2fnf
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH28073918
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10631229
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 507379
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n cis24345363
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 9939723
|
994 |
|
|
|a 92
|b IZTAP
|