|
|
|
|
LEADER |
00000cam a2200000Ma 4500 |
001 |
JSTOR_ocn803434031 |
003 |
OCoLC |
005 |
20231005004200.0 |
006 |
m o d |
007 |
cr |n||||||||| |
008 |
050907s2006 nju ob 001 0 eng d |
040 |
|
|
|a VT2
|b eng
|e pn
|c VT2
|d OCLCO
|d OCLCQ
|d N$T
|d IDEBK
|d E7B
|d OCLCA
|d JSTOR
|d N$T
|d OCLCE
|d OCLCF
|d OCLCQ
|d YDXCP
|d OCLCQ
|d COO
|d DEBBG
|d OCLCQ
|d UIU
|d AGLDB
|d DEBSZ
|d OTZ
|d OCLCQ
|d IOG
|d EZ9
|d STF
|d OCLCQ
|d VTS
|d REC
|d OCLCQ
|d LVT
|d UX1
|d M8D
|d OCLCO
|d UKAHL
|d HS0
|d VLB
|d UUM
|d MM9
|d AJS
|d OCLCQ
|d OCLCO
|d CNNOR
|d OCLCO
|d AAA
|d OCLCO
|d FAU
|d OCLCQ
|d OCLCO
|
015 |
|
|
|a GBA619163
|2 bnb
|
016 |
7 |
|
|a 013391724
|2 Uk
|
019 |
|
|
|a 626042673
|a 680616881
|a 839305284
|a 978620393
|a 978880651
|a 994897515
|a 999520623
|a 1005791559
|a 1037791756
|a 1048745412
|a 1064775886
|a 1091761170
|a 1100660397
|a 1108939655
|a 1119108286
|a 1178724241
|a 1187187229
|a 1228615255
|a 1249256032
|
020 |
|
|
|a 9781400837168
|q (electronic bk.)
|
020 |
|
|
|a 1400837162
|q (electronic bk.)
|
020 |
|
|
|a 1299401023
|
020 |
|
|
|a 9781299401020
|
020 |
|
|
|z 0691125503
|
020 |
|
|
|z 9780691125503
|
020 |
|
|
|z 0691125511
|
020 |
|
|
|z 9780691125510
|
024 |
7 |
|
|a 10.1515/9781400837168
|2 doi
|
029 |
1 |
|
|a AU@
|b 000054189057
|
029 |
1 |
|
|a CHBIS
|b 010896027
|
029 |
1 |
|
|a CHVBK
|b 483396958
|
029 |
1 |
|
|a DEBBG
|b BV043056514
|
029 |
1 |
|
|a DEBBG
|b BV043713078
|
029 |
1 |
|
|a DEBSZ
|b 44643485X
|
029 |
1 |
|
|a DEBSZ
|b 478275854
|
029 |
1 |
|
|a GBVCP
|b 1003708307
|
035 |
|
|
|a (OCoLC)803434031
|z (OCoLC)626042673
|z (OCoLC)680616881
|z (OCoLC)839305284
|z (OCoLC)978620393
|z (OCoLC)978880651
|z (OCoLC)994897515
|z (OCoLC)999520623
|z (OCoLC)1005791559
|z (OCoLC)1037791756
|z (OCoLC)1048745412
|z (OCoLC)1064775886
|z (OCoLC)1091761170
|z (OCoLC)1100660397
|z (OCoLC)1108939655
|z (OCoLC)1119108286
|z (OCoLC)1178724241
|z (OCoLC)1187187229
|z (OCoLC)1228615255
|z (OCoLC)1249256032
|
037 |
|
|
|a 22573/ctt3120jw
|b JSTOR
|
042 |
|
|
|a dlr
|
050 |
|
4 |
|a QA242.5
|b .K83 2006eb
|
072 |
|
7 |
|a MAT
|x 012010
|2 bisacsh
|
072 |
|
7 |
|a MAT037000
|2 bisacsh
|
082 |
0 |
4 |
|a 516.3/5
|2 22
|
084 |
|
|
|a SK 240
|2 rvk
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Kudla, Stephen S.,
|d 1950-
|
245 |
1 |
0 |
|a Modular forms and special cycles on Shimura curves /
|c Stephen S. Kudla, Michael Rapoport, Tonghai Yang.
|
260 |
|
|
|a Princeton :
|b Princeton University Press,
|c 2006.
|
300 |
|
|
|a 1 online resource (vii, 373 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Annals of mathematics studies ;
|v no. 161
|
504 |
|
|
|a Includes bibliographical references and index.
|
506 |
|
|
|3 Use copy
|f Restrictions unspecified
|2 star
|5 MiAaHDL
|
533 |
|
|
|a Electronic reproduction.
|b [Place of publication not identified] :
|c HathiTrust Digital Library,
|d 2010.
|5 MiAaHDL
|
538 |
|
|
|a Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002.
|u http://purl.oclc.org/DLF/benchrepro0212
|5 MiAaHDL
|
583 |
1 |
|
|a digitized
|c 2010
|h HathiTrust Digital Library
|l committed to preserve
|2 pda
|5 MiAaHDL
|
505 |
0 |
0 |
|t Frontmatter --
|t Contents --
|t Acknowledgments --
|t Chapter 1. Introduction --
|t Chapter 2. Arithmetic intersection theory on stacks --
|t Chapter 3. Cycles on Shimura curves --
|t Chapter 4. An arithmetic theta function --
|t Chapter 5. The central derivative of a genus two Eisenstein series --
|t Chapter 6. The generating function for 0-cycles --
|t Chapter 6 Appendix --
|t Chapter 7. An inner product formula --
|t Chapter 8. On the doubling integral --
|t Chapter 9. Central derivatives of L-functions --
|t Index.
|
520 |
|
|
|a Modular Forms and Special Cycles on Shimura Curves is a thorough study of the generating functions constructed from special cycles, both divisors and zero-cycles, on the arithmetic surface "M" attached to a Shimura curve "M" over the field of rational numbers. These generating functions are shown to be the q-expansions of modular forms and Siegel modular forms of genus two respectively, valued in the Gillet-Soulé arithmetic Chow groups of "M". The two types of generating functions are related via an arithmetic inner product formula. In addition, an analogue of the classical Siegel-Weil formula identifies the generating function for zero-cycles as the central derivative of a Siegel Eisenstein series. As an application, an arithmetic analogue of the Shimura-Waldspurger correspondence is constructed, carrying holomorphic cusp forms of weight 3/2 to classes in the Mordell-Weil group of "M". In certain cases, the nonvanishing of this correspondence is related to the central derivative of the standard L-function for a modular form of weight 2. These results depend on a novel mixture of modular forms and arithmetic geometry and should provide a paradigm for further investigations. The proofs involve a wide range of techniques, including arithmetic intersection theory, the arithmetic adjunction formula, representation densities of quadratic forms, deformation theory of p-divisible groups, p-adic uniformization, the Weil representation, the local and global theta correspondence, and the doubling integral representation of L-functions
|
546 |
|
|
|a In English.
|
590 |
|
|
|a JSTOR
|b Books at JSTOR All Purchased
|
590 |
|
|
|a JSTOR
|b Books at JSTOR Evidence Based Acquisitions
|
590 |
|
|
|a JSTOR
|b Books at JSTOR Demand Driven Acquisitions (DDA)
|
650 |
|
0 |
|a Arithmetical algebraic geometry.
|
650 |
|
0 |
|a Shimura varieties.
|
650 |
|
6 |
|a Géométrie algébrique arithmétique.
|
650 |
|
6 |
|a Variétés de Shimura.
|
650 |
|
7 |
|a MATHEMATICS
|x Geometry
|x Algebraic.
|2 bisacsh
|
650 |
|
7 |
|a MATHEMATICS
|x Functional Analysis.
|2 bisacsh
|
650 |
|
7 |
|a Arithmetical algebraic geometry
|2 fast
|
650 |
|
7 |
|a Shimura varieties
|2 fast
|
650 |
|
7 |
|a Arithmetische Geometrie
|2 gnd
|
650 |
|
7 |
|a Eisenstein-Reihe
|2 gnd
|
650 |
|
7 |
|a Shimura-Kurve
|2 gnd
|
650 |
|
7 |
|a Thetafunktion
|2 gnd
|
700 |
1 |
|
|a Rapoport, M.,
|d 1948-
|
700 |
1 |
|
|a Yang, Tonghai,
|d 1963-
|
776 |
0 |
8 |
|i Print version:
|a Kudla, Stephen S., 1950-
|t Modular forms and special cycles on Shimura curves.
|d Princeton : Princeton University Press, 2006
|z 0691125503
|w (DLC) 2005054621
|w (OCoLC)61500117
|
830 |
|
0 |
|a Annals of mathematics studies ;
|v no. 161.
|
856 |
4 |
0 |
|u https://jstor.uam.elogim.com/stable/10.2307/j.ctt32bc0s
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH28126620
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10678788
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 563767
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n cis25154167
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 10406264
|
994 |
|
|
|a 92
|b IZTAP
|