Cargando…

Modular forms and special cycles on Shimura curves /

Modular Forms and Special Cycles on Shimura Curves is a thorough study of the generating functions constructed from special cycles, both divisors and zero-cycles, on the arithmetic surface "M" attached to a Shimura curve "M" over the field of rational numbers. These generating fu...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Kudla, Stephen S., 1950-
Otros Autores: Rapoport, M., 1948-, Yang, Tonghai, 1963-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton : Princeton University Press, 2006.
Colección:Annals of mathematics studies ; no. 161.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ma 4500
001 JSTOR_ocn803434031
003 OCoLC
005 20231005004200.0
006 m o d
007 cr |n|||||||||
008 050907s2006 nju ob 001 0 eng d
040 |a VT2  |b eng  |e pn  |c VT2  |d OCLCO  |d OCLCQ  |d N$T  |d IDEBK  |d E7B  |d OCLCA  |d JSTOR  |d N$T  |d OCLCE  |d OCLCF  |d OCLCQ  |d YDXCP  |d OCLCQ  |d COO  |d DEBBG  |d OCLCQ  |d UIU  |d AGLDB  |d DEBSZ  |d OTZ  |d OCLCQ  |d IOG  |d EZ9  |d STF  |d OCLCQ  |d VTS  |d REC  |d OCLCQ  |d LVT  |d UX1  |d M8D  |d OCLCO  |d UKAHL  |d HS0  |d VLB  |d UUM  |d MM9  |d AJS  |d OCLCQ  |d OCLCO  |d CNNOR  |d OCLCO  |d AAA  |d OCLCO  |d FAU  |d OCLCQ  |d OCLCO 
015 |a GBA619163  |2 bnb 
016 7 |a 013391724  |2 Uk 
019 |a 626042673  |a 680616881  |a 839305284  |a 978620393  |a 978880651  |a 994897515  |a 999520623  |a 1005791559  |a 1037791756  |a 1048745412  |a 1064775886  |a 1091761170  |a 1100660397  |a 1108939655  |a 1119108286  |a 1178724241  |a 1187187229  |a 1228615255  |a 1249256032 
020 |a 9781400837168  |q (electronic bk.) 
020 |a 1400837162  |q (electronic bk.) 
020 |a 1299401023 
020 |a 9781299401020 
020 |z 0691125503 
020 |z 9780691125503 
020 |z 0691125511 
020 |z 9780691125510 
024 7 |a 10.1515/9781400837168  |2 doi 
029 1 |a AU@  |b 000054189057 
029 1 |a CHBIS  |b 010896027 
029 1 |a CHVBK  |b 483396958 
029 1 |a DEBBG  |b BV043056514 
029 1 |a DEBBG  |b BV043713078 
029 1 |a DEBSZ  |b 44643485X 
029 1 |a DEBSZ  |b 478275854 
029 1 |a GBVCP  |b 1003708307 
035 |a (OCoLC)803434031  |z (OCoLC)626042673  |z (OCoLC)680616881  |z (OCoLC)839305284  |z (OCoLC)978620393  |z (OCoLC)978880651  |z (OCoLC)994897515  |z (OCoLC)999520623  |z (OCoLC)1005791559  |z (OCoLC)1037791756  |z (OCoLC)1048745412  |z (OCoLC)1064775886  |z (OCoLC)1091761170  |z (OCoLC)1100660397  |z (OCoLC)1108939655  |z (OCoLC)1119108286  |z (OCoLC)1178724241  |z (OCoLC)1187187229  |z (OCoLC)1228615255  |z (OCoLC)1249256032 
037 |a 22573/ctt3120jw  |b JSTOR 
042 |a dlr 
050 4 |a QA242.5  |b .K83 2006eb 
072 7 |a MAT  |x 012010  |2 bisacsh 
072 7 |a MAT037000  |2 bisacsh 
082 0 4 |a 516.3/5  |2 22 
084 |a SK 240  |2 rvk 
049 |a UAMI 
100 1 |a Kudla, Stephen S.,  |d 1950- 
245 1 0 |a Modular forms and special cycles on Shimura curves /  |c Stephen S. Kudla, Michael Rapoport, Tonghai Yang. 
260 |a Princeton :  |b Princeton University Press,  |c 2006. 
300 |a 1 online resource (vii, 373 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Annals of mathematics studies ;  |v no. 161 
504 |a Includes bibliographical references and index. 
506 |3 Use copy  |f Restrictions unspecified  |2 star  |5 MiAaHDL 
533 |a Electronic reproduction.  |b [Place of publication not identified] :  |c HathiTrust Digital Library,  |d 2010.  |5 MiAaHDL 
538 |a Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002.  |u http://purl.oclc.org/DLF/benchrepro0212  |5 MiAaHDL 
583 1 |a digitized  |c 2010  |h HathiTrust Digital Library  |l committed to preserve  |2 pda  |5 MiAaHDL 
505 0 0 |t Frontmatter --  |t Contents --  |t Acknowledgments --  |t Chapter 1. Introduction --  |t Chapter 2. Arithmetic intersection theory on stacks --  |t Chapter 3. Cycles on Shimura curves --  |t Chapter 4. An arithmetic theta function --  |t Chapter 5. The central derivative of a genus two Eisenstein series --  |t Chapter 6. The generating function for 0-cycles --  |t Chapter 6 Appendix --  |t Chapter 7. An inner product formula --  |t Chapter 8. On the doubling integral --  |t Chapter 9. Central derivatives of L-functions --  |t Index. 
520 |a Modular Forms and Special Cycles on Shimura Curves is a thorough study of the generating functions constructed from special cycles, both divisors and zero-cycles, on the arithmetic surface "M" attached to a Shimura curve "M" over the field of rational numbers. These generating functions are shown to be the q-expansions of modular forms and Siegel modular forms of genus two respectively, valued in the Gillet-Soulé arithmetic Chow groups of "M". The two types of generating functions are related via an arithmetic inner product formula. In addition, an analogue of the classical Siegel-Weil formula identifies the generating function for zero-cycles as the central derivative of a Siegel Eisenstein series. As an application, an arithmetic analogue of the Shimura-Waldspurger correspondence is constructed, carrying holomorphic cusp forms of weight 3/2 to classes in the Mordell-Weil group of "M". In certain cases, the nonvanishing of this correspondence is related to the central derivative of the standard L-function for a modular form of weight 2. These results depend on a novel mixture of modular forms and arithmetic geometry and should provide a paradigm for further investigations. The proofs involve a wide range of techniques, including arithmetic intersection theory, the arithmetic adjunction formula, representation densities of quadratic forms, deformation theory of p-divisible groups, p-adic uniformization, the Weil representation, the local and global theta correspondence, and the doubling integral representation of L-functions 
546 |a In English. 
590 |a JSTOR  |b Books at JSTOR All Purchased 
590 |a JSTOR  |b Books at JSTOR Evidence Based Acquisitions 
590 |a JSTOR  |b Books at JSTOR Demand Driven Acquisitions (DDA) 
650 0 |a Arithmetical algebraic geometry. 
650 0 |a Shimura varieties. 
650 6 |a Géométrie algébrique arithmétique. 
650 6 |a Variétés de Shimura. 
650 7 |a MATHEMATICS  |x Geometry  |x Algebraic.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Functional Analysis.  |2 bisacsh 
650 7 |a Arithmetical algebraic geometry  |2 fast 
650 7 |a Shimura varieties  |2 fast 
650 7 |a Arithmetische Geometrie  |2 gnd 
650 7 |a Eisenstein-Reihe  |2 gnd 
650 7 |a Shimura-Kurve  |2 gnd 
650 7 |a Thetafunktion  |2 gnd 
700 1 |a Rapoport, M.,  |d 1948- 
700 1 |a Yang, Tonghai,  |d 1963- 
776 0 8 |i Print version:  |a Kudla, Stephen S., 1950-  |t Modular forms and special cycles on Shimura curves.  |d Princeton : Princeton University Press, 2006  |z 0691125503  |w (DLC) 2005054621  |w (OCoLC)61500117 
830 0 |a Annals of mathematics studies ;  |v no. 161. 
856 4 0 |u https://jstor.uam.elogim.com/stable/10.2307/j.ctt32bc0s  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH28126620 
938 |a ebrary  |b EBRY  |n ebr10678788 
938 |a EBSCOhost  |b EBSC  |n 563767 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis25154167 
938 |a YBP Library Services  |b YANK  |n 10406264 
994 |a 92  |b IZTAP