Cargando…

Green's function estimates for lattice Schrödinger operators and applications /

This book presents an overview of recent developments in the area of localization for quasi-periodic lattice Schrödinger operators and the theory of quasi-periodicity in Hamiltonian evolution equations. The physical motivation of these models extends back to the works of Rudolph Peierls and Douglas...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Bourgain, Jean, 1954-2018
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton, N.J. : Princeton University Press, ©2005.
©2005
Colección:Annals of mathematics studies ; no. 158.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 JSTOR_ocn795383539
003 OCoLC
005 20231005004200.0
006 m o d
007 cr cnu---unuuu
008 120613s2005 njua ob 000 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d OCLCQ  |d OCLCA  |d OCLCF  |d IDEBK  |d E7B  |d YDXCP  |d OCLCQ  |d AZK  |d CNNLC  |d UIU  |d COCUF  |d AGLDB  |d CNNOR  |d MOR  |d CCO  |d PIFAG  |d VT2  |d WT2  |d OCLCQ  |d CUY  |d OCLCQ  |d U3W  |d STF  |d VTS  |d NRAMU  |d CRU  |d OCLCQ  |d DEGRU  |d TXI  |d INT  |d OCLCQ  |d WYU  |d G3B  |d TKN  |d OCLCQ  |d REC  |d OCLCO  |d UKAHL  |d OCLCQ  |d VLB  |d CEF  |d HS0  |d AJS  |d OCLCQ  |d INARC  |d OCLCO  |d EBLCP  |d DEBSZ  |d JSTOR  |d ZCU  |d MERUC  |d IOG  |d XFH  |d DEBBG  |d EZ9  |d ICG  |d LVT  |d DKC  |d YWS  |d OCLCO 
015 |a GBA477098  |2 bnb 
016 7 |a 013023636  |2 Uk 
019 |a 889675022  |a 891745535  |a 961543539  |a 962557694  |a 992827109  |a 994553538  |a 999476943  |a 1004872417  |a 1005810000  |a 1013938096  |a 1055320394  |a 1066617747  |a 1100907393  |a 1181906292  |a 1228538436 
020 |a 9780691120980  |q (electronic bk.) 
020 |a 0691120986  |q (electronic bk.) 
020 |a 9781400837144 
020 |a 1400837146 
020 |z 0691120978 
020 |z 9780691120973 
020 |z 0691120986 
020 |a 1322075719 
020 |a 9781322075716 
024 7 |a 10.1515/9781400837144  |2 doi 
029 1 |a AU@  |b 000056671714 
029 1 |a DEBBG  |b BV043055295 
029 1 |a DEBSZ  |b 446412201 
029 1 |a AU@  |b 000056011007 
029 1 |a CHBIS  |b 010896025 
029 1 |a CHVBK  |b 483397164 
029 1 |a DEBBG  |b BV044070061 
029 1 |a DEBSZ  |b 413927628 
029 1 |a DEBSZ  |b 445558156 
029 1 |a DKDLA  |b 820120-katalog:999942277405765 
029 1 |a GBVCP  |b 1003787223 
035 |a (OCoLC)795383539  |z (OCoLC)889675022  |z (OCoLC)891745535  |z (OCoLC)961543539  |z (OCoLC)962557694  |z (OCoLC)992827109  |z (OCoLC)994553538  |z (OCoLC)999476943  |z (OCoLC)1004872417  |z (OCoLC)1005810000  |z (OCoLC)1013938096  |z (OCoLC)1055320394  |z (OCoLC)1066617747  |z (OCoLC)1100907393  |z (OCoLC)1181906292  |z (OCoLC)1228538436 
037 |a 22573/ctt7js3g1  |b JSTOR 
050 4 |a QC174.17.S3 
072 7 |a MAT  |x 007000  |2 bisacsh 
082 0 4 |a 515.39  |2 22 
084 |a 33.06  |2 bcl 
049 |a UAMI 
100 1 |a Bourgain, Jean,  |d 1954-2018. 
245 1 0 |a Green's function estimates for lattice Schrödinger operators and applications /  |c J. Bourgain. 
260 |a Princeton, N.J. :  |b Princeton University Press,  |c ©2005. 
264 4 |c ©2005 
300 |a 1 online resource :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
347 |b PDF 
490 1 |a Annals of mathematics studies ;  |v no. 158 
504 |a Includes bibliographical references. 
588 0 |a Print version record. 
505 0 0 |t Frontmatter --  |t Contents --  |t Acknowledgment --  |t Chapter 1. Introduction --  |t Chapter 2. Transfer Matrix and Lyapounov Exponent --  |t Chapter 3. Herman's Subharmonicity Method --  |t Chapter 4. Estimates on Subharmonic Functions --  |t Chapter 5. LDT for Shift Model --  |t Chapter 6. Avalanche Principle in SL --  |t Chapter 7. Consequences for Lyapounov Exponent, IDS, and Green's Function --  |t Chapter 8. Refinements --  |t Chapter 9. Some Facts about Semialgebraic Sets --  |t Chapter 10. Localization --  |t Chapter 11. Generalization to Certain Long-Range Models --  |t Chapter 12. Lyapounov Exponent and Spectrum --  |t Chapter 13. Point Spectrum in Multifrequency Models at Small Disorder --  |t Chapter 14. A Matrix-Valued Cartan-Type Theorem --  |t Chapter 15. Application to Jacobi Matrices Associated with Skew Shifts --  |t Chapter 16. Application to the Kicked Rotor Problem --  |t Chapter 17. Quasi-Periodic Localization on the Z --  |t Chapter 18. An Approach to Melnikov's Theorem on Persistency of Nonresonant Lower Dimension Tori --  |t Chapter 19. Application to the Construction of Quasi-Periodic Solutions of Nonlinear Schrödinger Equations --  |t Chapter 20. Construction of Quasi-Periodic Solutions of Nonlinear Wave Equations --  |t Appendix. 
520 |a This book presents an overview of recent developments in the area of localization for quasi-periodic lattice Schrödinger operators and the theory of quasi-periodicity in Hamiltonian evolution equations. The physical motivation of these models extends back to the works of Rudolph Peierls and Douglas R. Hofstadter, and the models themselves have been a focus of mathematical research for two decades. Jean Bourgain here sets forth the results and techniques that have been discovered in the last few years. He puts special emphasis on so-called "non-perturbative" methods and the important role of subharmonic function theory and semi-algebraic set methods. He describes various applications to the theory of differential equations and dynamical systems, in particular to the quantum kicked rotor and KAM theory for nonlinear Hamiltonian evolution equations. Intended primarily for graduate students and researchers in the general area of dynamical systems and mathematical physics, the book provides a coherent account of a large body of work that is presently scattered in the literature. It does so in a refreshingly contained manner that seeks to convey the present technological "state of the art." 
546 |a In English. 
590 |a JSTOR  |b Books at JSTOR Demand Driven Acquisitions (DDA) 
590 |a JSTOR  |b Books at JSTOR All Purchased 
590 |a JSTOR  |b Books at JSTOR Evidence Based Acquisitions 
650 0 |a Schrödinger operator. 
650 0 |a Green's functions. 
650 0 |a Hamiltonian systems. 
650 0 |a Evolution equations. 
650 6 |a Fonctions de Green. 
650 6 |a Systèmes hamiltoniens. 
650 6 |a Équations d'évolution. 
650 6 |a Opérateur de Schrödinger. 
650 7 |a MATHEMATICS  |x Differential Equations  |x General.  |2 bisacsh 
650 7 |a Evolution equations  |2 fast 
650 7 |a Green's functions  |2 fast 
650 7 |a Hamiltonian systems  |2 fast 
650 7 |a Schrödinger operator  |2 fast 
650 7 |a Mathematische fysica.  |2 gtt 
650 7 |a Green-functies.  |2 gtt 
650 7 |a Hamiltonianen.  |2 gtt 
650 7 |a Schrödingervergelijking.  |2 gtt 
653 |a Almost Mathieu operator. 
653 |a Analytic function. 
653 |a Anderson localization. 
653 |a Betti number. 
653 |a Cartan's theorem. 
653 |a Chaos theory. 
653 |a Density of states. 
653 |a Dimension (vector space). 
653 |a Diophantine equation. 
653 |a Dynamical system. 
653 |a Equation. 
653 |a Existential quantification. 
653 |a Fundamental matrix (linear differential equation). 
653 |a Green's function. 
653 |a Hamiltonian system. 
653 |a Hermitian adjoint. 
653 |a Infimum and supremum. 
653 |a Iterative method. 
653 |a Jacobi operator. 
653 |a Linear equation. 
653 |a Linear map. 
653 |a Linearization. 
653 |a Monodromy matrix. 
653 |a Non-perturbative. 
653 |a Nonlinear system. 
653 |a Normal mode. 
653 |a Parameter space. 
653 |a Parameter. 
653 |a Parametrization. 
653 |a Partial differential equation. 
653 |a Periodic boundary conditions. 
653 |a Phase space. 
653 |a Phase transition. 
653 |a Polynomial. 
653 |a Renormalization. 
653 |a Self-adjoint. 
653 |a Semialgebraic set. 
653 |a Special case. 
653 |a Statistical significance. 
653 |a Subharmonic function. 
653 |a Summation. 
653 |a Theorem. 
653 |a Theory. 
653 |a Transfer matrix. 
653 |a Transversality (mathematics). 
653 |a Trigonometric functions. 
653 |a Trigonometric polynomial. 
653 |a Uniformization theorem. 
776 0 8 |i Print version:  |a Bourgain, Jean, 1954-  |t Green's function estimates for lattice Schrödinger operators and applications.  |d Princeton, N.J. : Princeton University Press, ©2005  |z 0691120978  |w (DLC) 2004104492  |w (OCoLC)56874852 
830 0 |a Annals of mathematics studies ;  |v no. 158. 
856 4 0 |u https://jstor.uam.elogim.com/stable/10.2307/j.ctt7zvc64  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH28126605 
938 |a De Gruyter  |b DEGR  |n 9781400837144 
938 |a EBSCOhost  |b EBSC  |n 454414 
938 |a YBP Library Services  |b YANK  |n 11678855 
938 |a Internet Archive  |b INAR  |n greensfunctiones0000bour 
938 |a EBL - Ebook Library  |b EBLB  |n EBL1771114 
994 |a 92  |b IZTAP