Cargando…

The decomposition of global conformal invariants /

This book addresses a basic question in differential geometry that was first considered by physicists Stanley Deser and Adam Schwimmer in 1993 in their study of conformal anomalies. The question concerns conformally invariant functionals on the space of Riemannian metrics over a given manifold. Thes...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Alexakis, Spyros, 1978-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton : Princeton University Press, 2012.
Colección:Annals of mathematics studies ; no. 182.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ia 4500
001 JSTOR_ocn780425982
003 OCoLC
005 20231005004200.0
006 m o d
007 cr cnu---unuuu
008 120319s2012 nju ob 001 0 eng d
010 |a  2011037622 
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d OCLCQ  |d N$T  |d YDXCP  |d OCLCQ  |d DEBSZ  |d JSTOR  |d OCLCF  |d OCLCQ  |d COO  |d E7B  |d CDX  |d UMI  |d OCLCQ  |d UIU  |d COCUF  |d LOA  |d MERUC  |d ICG  |d PIFAG  |d FVL  |d OTZ  |d ZCU  |d LGG  |d U3W  |d EZ9  |d OCLCQ  |d STF  |d WRM  |d CEF  |d TXC  |d INT  |d VT2  |d AU@  |d OCLCQ  |d WYU  |d LVT  |d TKN  |d OCLCQ  |d DKC  |d OCLCQ  |d UKAHL  |d OCLCQ  |d MM9  |d OCLCO  |d OCLCQ  |d SFB  |d OCLCQ 
066 |c (S 
016 7 |a 016026184  |2 Uk 
019 |a 787846763  |a 817706383  |a 1055364203  |a 1064186437  |a 1181905929  |a 1228615228 
020 |a 9781400842728  |q (electronic bk.) 
020 |a 1400842727  |q (electronic bk.) 
020 |a 9780691153476 
020 |a 0691153477 
020 |a 9780691153483 
020 |a 0691153485 
024 7 |a 10.1515/9781400842728  |2 doi 
029 1 |a AU@  |b 000050347645 
029 1 |a DEBBG  |b BV040903380 
029 1 |a DEBBG  |b BV043097895 
029 1 |a DEBSZ  |b 372896782 
029 1 |a DEBSZ  |b 378280945 
029 1 |a DEBSZ  |b 379326655 
029 1 |a DEBSZ  |b 381394425 
029 1 |a DEBSZ  |b 421439483 
029 1 |a DEBSZ  |b 445578378 
029 1 |a GBVCP  |b 1003692656 
029 1 |a GBVCP  |b 785364617 
029 1 |a AU@  |b 000054186942 
029 1 |a DKDLA  |b 820120-katalog:999930316405765 
035 |a (OCoLC)780425982  |z (OCoLC)787846763  |z (OCoLC)817706383  |z (OCoLC)1055364203  |z (OCoLC)1064186437  |z (OCoLC)1181905929  |z (OCoLC)1228615228 
037 |a 22573/cttf56s  |b JSTOR 
050 4 |a QA646 
072 7 |a MAT  |x 041000  |2 bisacsh 
072 7 |a MAT012030  |2 bisacsh 
082 0 4 |a 518  |2 22 
049 |a UAMI 
100 1 |a Alexakis, Spyros,  |d 1978- 
245 1 4 |a The decomposition of global conformal invariants /  |c Spyros Alexakis. 
260 |a Princeton :  |b Princeton University Press,  |c 2012. 
300 |a 1 online resource (460 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file  |2 rda 
490 1 |a Annals of mathematics studies ;  |v no. 182 
505 0 |6 880-01  |a Cover Page; Title Page; Copyright Page; Table of Contents; Acknowledgments; 1. Introduction; 1.1 Related Questions; 1.2 Outline of this Work; 2. An Iterative Decomposition of Global Conformal Invariants: The First Step; 2.1 Introduction; 2.2 Conventions, Background, and the Super Divergence Formula; 2.3 From the super Divergence Formula for Ig(ø) Back to P(g): The Two Main Claims of this Work; 2.4 Proposition 2.7 in the Easy Case s = s; 2.5 Proposition 2.7 in the Hard Case s <s; 3. The Second Step: The Fefferman-Graham Ambient Metric and the Nature of the Decomposition; 3.1 Introduction. 
505 8 |a 3.2 The Locally Conformally Invariant Piece in P(g): A Proof of Lemmas 3.1, 3.2, and 3.33.3 Proof of Lemma 3.4: The Divergence Piece in P(g); 4. A Result on the Structure of Local Riemannian Invariants: The Fundamental Proposition; 4.1 Introduction; 4.2 The fundamental Proposition 4.13; 4.3 Proof of Proposition 4.13: Set up an Induction and Reduce the Inductive Step to Lemmas 4.16, 4.19, 4.24; 4.4 Proof that Proposition 4.13 Follows from Lemmas 4.16, 4.19, and 4.24 (and Lemmas 4.22 and 4.23); 5. The Inductive Step of the Fundamental Proposition: The Simpler Cases; 5.1 Introduction. 
505 8 |a 5.2 Notation and Preliminary Results5.3 An analysis of Curvtrans[Lg]; 5.4 A study of LC[Lg] and W[Lg] in (5.16): Computations and cancellations; 6. The Inductive Step of the Fundamental Proposition: The Hard Cases, Part I; 6.1 Introduction; 6.2 The First Ingredient in the Grand Conclusion; 6.3 The Second Part of the Grand Conclusion: A study of Image 1,ß Øu+1 [Lg]=0; 6.4 The Grand Conclusion and the Proof of Lemma 4.24; 7. The Inductive Step of the Fundamental Proposition: The Hard Cases, Part II; 7.1 Introduction: A sketch of the Strategy; 7.2 The proof of Lemma 4.24 in Case B; A. Appendix. 
505 8 |a A.1 Some Technical ToolsA. 2 Some Postponed Short Proofs; A.3 Proof of Lemmas 4.22 and 4.23; Bibliography; Index of Authors and Terms; Index of Symbols. 
520 |a This book addresses a basic question in differential geometry that was first considered by physicists Stanley Deser and Adam Schwimmer in 1993 in their study of conformal anomalies. The question concerns conformally invariant functionals on the space of Riemannian metrics over a given manifold. These functionals act on a metric by first constructing a Riemannian scalar out of it, and then integrating this scalar over the manifold. Suppose this integral remains invariant under conformal re-scalings of the underlying metric. What information can one then deduce about the Riemannian scalar? 
588 0 |a Print version record. 
504 |a Includes bibliographical references and index. 
546 |a In English. 
590 |a JSTOR  |b Books at JSTOR All Purchased 
590 |a JSTOR  |b Books at JSTOR Demand Driven Acquisitions (DDA) 
590 |a JSTOR  |b Books at JSTOR Evidence Based Acquisitions 
650 0 |a Conformal invariants. 
650 0 |a Decomposition (Mathematics) 
650 6 |a Invariants conformes. 
650 6 |a Décomposition (Mathématiques) 
650 7 |a MATHEMATICS  |x Numerical Analysis.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Geometry  |x Differential.  |2 bisacsh 
650 7 |a Conformal invariants.  |2 fast  |0 (OCoLC)fst00875030 
650 7 |a Decomposition (Mathematics)  |2 fast  |0 (OCoLC)fst00889127 
776 0 8 |i Print version:  |a Alexakis, Spyros.  |t Decomposition of Global Conformal Invariants (AM-182).  |d Princeton : Princeton University Press, 2012  |z 9780691153476 
830 0 |a Annals of mathematics studies ;  |v no. 182. 
856 4 0 |u https://jstor.uam.elogim.com/stable/10.2307/j.ctt7rqqs  |z Texto completo 
880 0 0 |6 505-01/(S  |g Machine generated contents note:  |g 1.  |t Introduction --  |g 1.1.  |t Related questions --  |g 1.2.  |t Outline of this work --  |g 2.  |t Iterative Decomposition of Global Conformal Invariants: The First Step --  |g 2.1.  |t Introduction --  |g 2.2.  |t Conventions, background, and the super divergence formula --  |g 2.3.  |t From the super divergence formula for Ig (ø) back to P(g): The two main claims of this work --  |g 2.4.  |t Proposition 2.7 in the easy case s = σ --  |g 2.5.  |t Proposition 2.7 in the hard case s <σ --  |g 3.  |t Second Step: The Fefferman-Graham Ambient Metric and the Nature of the Decomposition --  |g 3.1.  |t Introduction --  |g 3.2.  |t locally conformally invariant piece in P(g): A proof of Lemmas 3.1, 3.2, and 3.3 --  |g 3.3.  |t Proof of Lemma 3.4: The divergence piece in P(g) --  |g 4.  |t Result on the Structure of Local Riemannian Invariants: The Fundamental Proposition --  |g 4.1.  |t Introduction --  |g 4.2.  |t fundamental Proposition 4.13 --  |g 4.3.  |t Proof of Proposition 4.13: Set up an induction and reduce the inductive step to Lemmas 4.16, 4.19, 4.24 --  |g 4.4.  |t Proof that Proposition 4.13 follows from Lemmas 4.16, 4.19, and 4.24 (and Lemmas 4.22 and 4.23) --  |g 5.  |t Inductive Step of the Fundamental Proposition: The Simpler Cases --  |g 5.1.  |t Introduction --  |g 5.2.  |t Notation and preliminary results --  |g 5.3.  |t analysis of CurvTrans[Lg] --  |g 5.4.  |t study of LC[Lg] and W[Lg] in (5.16): Computations and cancellations --  |g 6.  |t Inductive Step of the Fundamental Proposition: The Hard Cases, Part I --  |g 6.1.  |t Introduction --  |g 6.2.  |t first ingredient in the grand conclusion --  |g 6.3.  |t second part of the grand conclusion: A study of Image 1, β ø u + 1[Lg] =0 --  |g 6.4.  |t grand conclusion and the proof of Lemma 4.24 --  |g 7.  |t Inductive Step of the Fundamental Proposition: The Hard Cases, Part II --  |g 7.1.  |t Introduction: A sketch of the strategy --  |g 7.2.  |t proof of Lemma 4.24 in Case B --  |g A.  |t Appendix --  |g A.1.  |t Some technical tools --  |g A.2.  |t Some postponed short proofs --  |g A.3.  |t Proof of Lemmas 4.22 and 4.23. 
938 |a Askews and Holts Library Services  |b ASKH  |n AH23067674 
938 |a Coutts Information Services  |b COUT  |n 22288240 
938 |a EBL - Ebook Library  |b EBLB  |n EBL870005 
938 |a ebrary  |b EBRY  |n ebr10539569 
938 |a EBSCOhost  |b EBSC  |n 439689 
938 |a YBP Library Services  |b YANK  |n 7446813 
994 |a 92  |b IZTAP