Cargando…

In pursuit of the traveling salesman : mathematics at the limits of computation /

"What is the shortest possible route for a traveling salesman seeking to visit each city on a list exactly once and return to his city of origin? It sounds simple enough, yet the traveling salesman problem is one of the most intensely studied puzzles in applied mathematics--and it has defied so...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Cook, William, 1957- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Princeton : Princeton University Press, 2012.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ma 4500
001 JSTOR_ocn774285465
003 OCoLC
005 20231005004200.0
006 m o d
007 cr cn|||||||||
008 110826s2012 njuab ob 001 0 eng d
010 |a  2011030626 
040 |a E7B  |b eng  |e pn  |c E7B  |d N$T  |d COO  |d CDX  |d OCLCQ  |d DEBSZ  |d OCLCQ  |d YDXCP  |d OSU  |d OCLCQ  |d JSTOR  |d OCLCF  |d UMI  |d DEBBG  |d IDEBK  |d EBLCP  |d OCLCQ  |d LOA  |d OCLCQ  |d TOA  |d AGLDB  |d JG0  |d CUS  |d CNCGM  |d MOR  |d PIFAG  |d ZCU  |d OTZ  |d OCLCQ  |d MERUC  |d OCLCQ  |d IOG  |d JBG  |d U3W  |d EZ9  |d STF  |d WRM  |d VTS  |d COCUF  |d CEF  |d NRAMU  |d ICG  |d INT  |d OCLCQ  |d WYU  |d LVT  |d OCLCQ  |d UAB  |d DKC  |d OCLCQ  |d M8D  |d VT2  |d OCLCQ  |d VLY  |d MM9  |d AJS  |d OCLCQ  |d OCLCO  |d OCL  |d OCLCQ  |d OCLCO 
016 7 |a 015879100  |2 Uk 
019 |a 765125031  |a 768731903  |a 779695798  |a 816873097  |a 870550953  |a 927292252  |a 960201757  |a 961495755  |a 962669970  |a 988444672  |a 992039685  |a 994983258  |a 1037785408  |a 1038657906  |a 1045440628  |a 1063002534  |a 1103257182  |a 1129372696  |a 1162547102 
020 |a 9781400839599  |q (electronic bk.) 
020 |a 1400839599  |q (electronic bk.) 
020 |a 1283339773 
020 |a 9781283339773 
020 |z 0691152705 
020 |z 9780691152707 
020 |a 9786613339775 
020 |a 6613339776 
024 8 |a 9786613339775 
029 1 |a AU@  |b 000051621018 
029 1 |a DEBBG  |b BV040091291 
029 1 |a DEBBG  |b BV041783517 
029 1 |a DEBBG  |b BV042522897 
029 1 |a DEBBG  |b BV043168469 
029 1 |a DEBBG  |b BV044159211 
029 1 |a DEBSZ  |b 372824935 
029 1 |a DEBSZ  |b 379324032 
029 1 |a DEBSZ  |b 404332048 
029 1 |a DEBSZ  |b 421488395 
029 1 |a DEBSZ  |b 446780316 
029 1 |a GBVCP  |b 1003689795 
029 1 |a NZ1  |b 16078105 
029 1 |a AU@  |b 000068437526 
029 1 |a DKDLA  |b 820120-katalog:999938731205765 
035 |a (OCoLC)774285465  |z (OCoLC)765125031  |z (OCoLC)768731903  |z (OCoLC)779695798  |z (OCoLC)816873097  |z (OCoLC)870550953  |z (OCoLC)927292252  |z (OCoLC)960201757  |z (OCoLC)961495755  |z (OCoLC)962669970  |z (OCoLC)988444672  |z (OCoLC)992039685  |z (OCoLC)994983258  |z (OCoLC)1037785408  |z (OCoLC)1038657906  |z (OCoLC)1045440628  |z (OCoLC)1063002534  |z (OCoLC)1103257182  |z (OCoLC)1129372696  |z (OCoLC)1162547102 
037 |a 333977  |b MIL 
037 |a 22573/cttnvjk  |b JSTOR 
050 4 |a QA164  |b .C69 2012eb 
072 7 |a MAT  |x 013000  |2 bisacsh 
072 7 |a MAT000000  |2 bisacsh 
072 7 |a MAT042000  |2 bisacsh 
072 7 |a MAT025000  |2 bisacsh 
072 7 |a PBU  |2 bicssc 
082 0 4 |a 511/.5  |2 23 
084 |a MAT000000  |a MAT025000  |2 bisacsh 
049 |a UAMI 
100 1 |a Cook, William,  |d 1957-  |e author. 
245 1 0 |a In pursuit of the traveling salesman :  |b mathematics at the limits of computation /  |c William J. Cook. 
260 |a Princeton :  |b Princeton University Press,  |c 2012. 
300 |a 1 online resource (xiii, 228 pages) :  |b illustrations (some color), color maps 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
520 |a "What is the shortest possible route for a traveling salesman seeking to visit each city on a list exactly once and return to his city of origin? It sounds simple enough, yet the traveling salesman problem is one of the most intensely studied puzzles in applied mathematics--and it has defied solution to this day. In this book, William Cook takes readers on a mathematical excursion, picking up the salesman's trail in the 1800s when Irish mathematician W.R. Hamilton first defined the problem, and venturing to the furthest limits of today's state-of-the-art attempts to solve it. Cook examines the origins and history of the salesman problem and explores its many important applications, from genome sequencing and designing computer processors to arranging music and hunting for planets. He looks at how computers stack up against the traveling salesman problem on a grand scale, and discusses how humans, unaided by computers, go about trying to solve the puzzle. Cook traces the salesman problem to the realms of neuroscience, psychology, and art, and he also challenges readers to tackle the problem themselves. The traveling salesman problem is--literally--a $1 million question. That's the prize the Clay Mathematics Institute is offering to anyone who can solve the problem or prove that it can't be done. In Pursuit of the Traveling Salesman travels to the very threshold of our understanding about the nature of complexity, and challenges you yourself to discover the solution to this captivating mathematical problem"--  |c Provided by publisher. 
505 0 |a Challenges. Tour of the United States -- An impossible task? -- One problem at a time -- Road map of the book -- Origins of the problem. Before the mathematicians -- Euler and Hamilton -- Vienna to Harvard to Princeton -- And on to the RAND Corporation -- A statistical view -- The salesman in action. Road trips -- Mapping genomes -- Aiming telescopes, x-rays, and lasers -- Guiding industrial machines -- Organizing data -- Tests for microprocessors -- Scheduling jobs -- And more -- Searching for a tour. The 48-states problem -- Growing trees and tours -- Alterations while you wait -- Borrowing from physics and biology -- The DIMACS challenge -- Tour champions -- Linear programming. General-purpose model -- The simplex algorithm -- Two for the price of one: LP duality -- The degree LP relaxation of the TSP -- Eliminating subtours -- A perfect relaxation -- Integer programming -- Operations research -- Cutting planes. The cutting-plane method -- A catalog of TSP inequalities -- The separation problem -- Edmonds's glimpse of heaven -- Cutting planes for integer programming -- Branching. Breaking up -- The search party -- Branch-and-bound for integer programming -- Big computing. World records -- The TSP on a grand scale -- Complexity. A model of computation -- The campaign of Jack Edmonds -- Cook's theorem and Karp's list -- State of the TSP -- Do we need computers? -- The human touch. Humans versus computers -- Tour-finding strategies -- The TSP in neuroscience -- Animals solving the TSP -- Aesthetics -- Julian Lethbridge -- Jordan curves -- Continuous lines -- Art and mathematics -- Pushing the limits. 
546 |a English. 
590 |a JSTOR  |b Books at JSTOR Evidence Based Acquisitions 
590 |a JSTOR  |b Books at JSTOR Demand Driven Acquisitions (DDA) 
590 |a JSTOR  |b Books at JSTOR All Purchased 
650 0 |a Traveling salesman problem. 
650 0 |a Computational complexity. 
650 0 |a Vehicle routing problem. 
650 6 |a Problèmes de tournées. 
650 6 |a Complexité de calcul (Informatique) 
650 7 |a MATHEMATICS  |x Graphic Methods.  |2 bisacsh 
650 7 |a MATHEMATICS  |x General.  |2 bisacsh 
650 7 |a Vehicle routing problem  |2 fast 
650 7 |a Computational complexity  |2 fast 
650 7 |a Traveling salesman problem  |2 fast 
776 0 8 |i Print version:  |z 9780691152707  |w (DLC) 2011030626 
856 4 0 |u https://jstor.uam.elogim.com/stable/10.2307/j.ctt7t8kc  |z Texto completo 
938 |a Coutts Information Services  |b COUT  |n 20189693 
938 |a EBL - Ebook Library  |b EBLB  |n EBL802242 
938 |a ebrary  |b EBRY  |n ebr10514781 
938 |a EBSCOhost  |b EBSC  |n 408430 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 333977 
938 |a YBP Library Services  |b YANK  |n 7273266 
994 |a 92  |b IZTAP